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Abstract. Using the generalized regular representation, an explicit construction of the unitary
irreducible representations of the{21)-Poincaé group is presented. A detailed description of
the angular momentum and spin iR-2 dimensions is given. On this base the relativistic wave
equations for all spins (including fractional) are constructed.

1. Introduction

At the present time a great deal of attention is being devoted to field theoretical models in
(2 + 1)-dimensional spacetime [1]. There is a possibility that particles exist with fractional
spin and exotic statistics in this space. These particles, which are called anyons, may have
a relation to the physics of planar phenomena, for example, to the fractional quantum Hall
effect [2].

The corresponding Poin@agroup, which will be denoted ag (2, 1), was studied in [3]
and from the the field theoretical point of view in [4]. The importance of the investigation
of the M (2, 1) group is also stressed by the fact that, being a subgroup of the Poincare
group in 3+ 1 dimensionsM (3, 1), it retains many of the properties of the latter. In this
connection, some of the results, which can be derived forMtig, 1) group, may also be
valid for the M (3, 1) group. It should be remarked that in contrastM@l, 1), discussed in
detail in [5], M (2, 1) has a non-Abelian and non-compact subgroup of rotations, similar to
M (3, 1), that leads to a non-trivial structure of the spinning space.

The aim of the present work is to construct a detailed theory ofMh@, 1) group
representations in a form which may be convenient for physical applications. Namely, we
try to emphasize the problem of the spin description and the construction of relativistic
wave equations.

In the seminal paper [6] Wigner gave a classification of all unitary irreductible
representations of the-8 1 Poincaé group, together with a prescription for their explicit
constraction. In original papers [7] using the Wigner prescription, the unitary irreductible
representations af/ (3, 1) were explicitly determined and a synthesis of covariant partical
equations connected with this representation was carried out. This approach to the
representation theory @f (3, 1) has been discussed in detail in numerous papers and books
[8-12]. On the other hand, there is in fact only one work [3] where the representation
theory of M (2, 1) has been studied directly. Thus, we hope that the present paper can add
some important details to the latter theory.
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When classifying the representations of semi-direct products, one usually uses the
method of the little group [6]. That method was also applieda®, 1) in [3]. However,
for our purposes of the detailed and explicit construction of representations it is more
convenient to use both the little group method and the method of harmonic analysis and,
in particular, the generalized regular representation (GRR). It is known that any irreducible
representation (IR) of a Lie group is equivalent to a sub-representation of the left (right)
GRR [13-15]. The harmonic analysis allows the most complete description to be given
of representations of a group Lie, using explicit realizations in spaces of functions on the
group. The ideas of the method are presented for example in [11], where one can also
find its application to the motion group of the plam&(2). The harmonic analysis for the
M (3,1) group can be found in [18,19]. The harmonic analysis is also very useful in the
study of special functions properties (see [15, 16] and the Wigner lectures, produced by
Talman [17]).

In the present work we use the quasi-regular and generalized regular representations to
explicitly construct all unitary IRs o (2, 1) and to analyse on this basis the relativistic
wave equations for higher spins (including fractional) and the corresponding coherent
states. Studying the quasi-regular representationtM@®, 1), we introduce the scalar
fields and construct the relativistic theory oft21 angular orbital momentum. Presenting
(2 4+ 1)-dimensional vectors by means ofx22 matrices, we introduce a parametrization
of the M(2,1) group, where the rotations are given by two complex numhersnd
72, |z11> — |z2/> = 1, which are analogues of Cayley—Klein parameters of the compact
case. The representation space of the left GRR consists of scalar funttions, whereas
the spinning operators can be presented as first-order differential operators in the variables

It is convenient to classify representations not only with respect to the Casimir operators

= p,p* and W= pMJ”“ but also with respect to the operator of the square of the
spm which commutes with all generators of the left GRR. The latter operator marks
representations of the-2 1 Lorentz group.

In the framework of such an approach one can naturally construct relativistic wave
equations for particles with arbitrary spin. The fixation of the value of the square of the
spin S(S + 1) defines the structure of thedependence of the functions(x, z), namely,
they appear to be (quasi-)polynomials of the powdrcdh z. The coefficients of these
polynomials are interpreted as components of finite(infinite)-dimensional wavefunctions of
relativistic particles with higher spins. The fixation of the values of the Casimir operators
provides equations for these components.

In such a way, for example, botht2L Dirac equation (equation for spin 1) and equations
for particles with fractional spins, which are related to the discrete series of the Lorentz
group (see [4,20,21]) appear. Thus, using GRR one achieves a unique approach with
which to describe particles with different spins and also provides a possibility to establish
a relation between different descriptions of these spins, for example, in terms of scalar
functions f (x, z) or in terms of multicomponent columns(x).

A detailed description of angular momentum and spin # 2 dimensions is given on
the base of the representation theorySaf (1, 1), which is summarized in the appendix.

In particular, multivalued unitary IRs &0 (2, 1) ~ SU (1, 1) and corresponding coherent
states (CS) are considered. It is interesting to discover that thd Dirac equation also
appears in the latter case as an equation for CS evolution.

The SO (2, 1) group appears not only in particle physics but has many other physical
applications. For example in the classical theory of light propagation [22] and especially in
guantum optics where this group is useful for the description of the coherent and squeezed
states of light [23]. The coherent and squeezed states are canonically transformed states of
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the groundstate harmonic oscillator. A subset of these transformations form a group Sp(2)
which is locally isomorphic to th€2 4+ 1)-dimension Lorentz group.

2. Parametrization

M (2, 1) is a six-parametric group of motions @+ 1)-dimensional pseudo-Euclidean space,
it preserves the intervaj,, Ax*Ax", wherex = (x*), u = 0, 1, 2, are coordinates, and
nw = diag(l, —1, —1) is the Minkowski tensor. The transformation of the vectounder
the action of the group (vector representation) is given by the formula

x'=gx geM2 x" = A x" +a” (2.2)

whereA is a 3x 3 rotation matrix of the 2-1 Lorentz groupO (2, 1). The transformations
can also be presented in the four-dimensional form,

/0 a° %0
x1 A(x) at x!
X2 = a2 X2 (2-2)
1 0 0 0 1 1

with the composition lowmaz, Az)(a1, A1) = (a2 + Azai, A2A7). The latter means that
M (2,1) is the semi-direct product of the421 translation groug’ (3) and the Lorentz group
0(2,1),

M2,1) =T@B)x)0(2,1).

As is known the group) (2, 1) contains four disjoint setsﬁ (detA = +1, AJ > 0),
0! (detA = 41, AY < 0), 0! (deta = —1, A9 > 0), 0 (detA = -1, A < 0),
where onIyOI = §00(2,1) is connected to the identity continuously. The two s@ﬂ§
are equivalent to the groufpO(2,1). The corresponding continuously connected part of
M(2,1) is T(3)x)S00(2, 1).

Consider first the grous Op(2, 1). One-parametrical subgroups 80Dy (2, 1), which
correspond to the rotations around ax@sx?!, x2, are given by the matrices

1 0 0 coshe; 0 sinhay
Ao = (O COSxg —sincx0> A= ( 0 1 0 )
0 sinag cOSwg sinhay 0 coshx;
cosha,  —sinhas O
Ay = (—sinhaz coshu, 0) . (2.3)
0 0 1

The general transformation can be written in the fonp. = exp(—ie,J*), where the
generators/* = i(d/dot,) (Axr)|e=0 are

00 O 0 0 i 0 —-i 0
J°=(O 0 —i) le(o 0 o) J2=<—i 0 o). (2.4)
0i O i 00 0 0 O

They obey the commutation relations
[JF, T = —ie" T,

wheree”"" is the totally antisymmetric Levi-Civita symbad9%? = 1.

It is also possible to write the finite transformations by meanSiof2, R) matrices [3]
or SU(1, 1) matrices. We will consider the latter possibility in detail, taking into account
that SOo(2, 1) is equivalent toSU (1, 1)/Z,, Z, = {I, —1}, where Z, is a multiplicative
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group consisting of two elementg, is the unit matrix. Thus, we are going to study the
group M(2,1) = T(3)x)SU(1,1). The classification and construction of representations
of M(2,1) allow representations of the group(2, 1) to be described.

There is a one-to-one correspondence between thd 2orentz vectorsc* and 2x 2
matricesX. Let o° be the unit 2« 2 matrix ando!, o2 the two first Pauli matrices. Then

X == X“O H = x * Ix detX - X =X, )(M )(M - *2T| (XO )
Xl + |.x2 .xo ’

The transformation (2.1) can be written in terms of the matrix representation in the form
X' =UXU'"+A (2.6)

where the matricex’, X, A correspond to the vectors”, x#, a*, and theSU (1, 1) matrix
U1

U=|[H" 42 Ut = Uy U
uz uy U Uy
ug|® = uzl® =1 u1 = coshp/2) e—¢-)/2 U = — sinh(g/2) d-¢+)/2
0<0 < —2n <P <2n O<Lw<2r (2.7)

provides the Lorentz rotations. Its relation with the mattixfrom SOq(2, 1) is given by
the formula

Ul + usitp 2 Reuity) 21m(uqity)
A= ( 2Reuup)  Rew? +ud)  Im@u? — ug)) )
—2IM(uuz) —Im@? +ud) Rew? — u3)
One can remark thal and —U correspond to one and the sameso that to parametrize
the rotations it is enough to ugee [0, 2].

In the representation (2.6); and u, are analogues of Cayley—Klein parameters,
and ¢, 0, o are those of the Euler angled/ = U(¢,0,w). It is possible to
see that the matrice& (¢, 0,0) and U(0, 0, w) correspond to the rotations around the
axis x% U(0,6,0) correspond to the rotations around the axfsand U(¢,6,w) =
U((,0,00U(,0,0U (0,0, w), i.e. the general transformation can be presented asthe
rotation around the axis®, then thed-rotation around the axig?, and again the-rotation
around the axis®.

The following sets of the paramete(s, 6, w): (xo, 0,0), (—7/2, az, 7/2), (0, a1, 0),
correspond to the one parametrical subgroups(ao), A i(a1), Ac(az) respectively.
The matrix A in the Euler angles parametrization can be presented\@s 6, w) =
A (@) A2(0) Ao (w).

We are also going to use the latter parametrization of elemenfsiM (2, 1) by means
of matricesA andSU (1, 1) matricesU, g = (A, U). In this representation the composition
low and inverse elements have the form

¢ =(A,U) = (Az, Up) (A1, Ur) = (U2A1US + Az, UsUn)
¢ t=UtAUuT™HL U™, (2.8)
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3. Quasi-regular representation and theory of orbital momentum

3.1. Quasi-regular representation and scalar field

Let us consider a quasi-regular representatfo@), which is acts on the coset space
M2,1)/02,1) =M(2,1)/SU(, 1), i.e. in the space of functiong(x),
F@)=T@fx) = f(g ). (3.1)

The representation (3.1) corresponds to a scalar field transformatiorfiggx,) = f/(x') =
f(x). The explicit form ofg~1x is given by the formulae

(7)) = (A H " —ah) g =U"X-AWUH 3.2)
in the parametrizations (2.1) and (2.6), respectively. The Lie algeb @f 1) contains

six generatorgy,, and L*, which correspond to the parameters and —ay,. They have a
form

b, =id/ox" L"=€e"™ 3, p, =i x,0/dx" (3.3)
in the representation in question, and obey the commutation relations

[pu. P]1=0  [p* L] =—ie""p,  [L* L']=—ie""L,. (3.4)
Finite transformations in the parametrizations (2.4) and (2.7) can be written as

T(9)f(x) = 5 @01 giol® dar f(x), (3.5)

The eigenvaluen? of the Casimir operatdrp? can, in particular, characterize the IR,
D2 fn(x) = m2f,,(x). For unitary representations, where the generaforsaand L* are
Hermitian, m? is real. It follows from the commutation relations (3.4) trfaft is also a
Casimir operator, which is, however, zero in the representation under consideration.

To find all IRs, which are contained in the representation (3.1), we consider the space
of functions which are dependent on momenta, doing the Fourier transformation,

o(p) = (27)"%2 / fx) €7 dx. (3.6)
In this space the expressions for the generators have the form
Pu=pu  L"=e",p, =ie""p,d/0p". 3.7)

The form of L* in the space of functiong(p) coincides with that in the space of functions
f(x) if one replacep” — x*, and, therefore, the rotations result in(p) — ¢(p’), where

Py= (A*l)va. In the parametrization (2.6),

P =UtPU™YH P = p°I + plo? + p?2. (3.8)
Translations affect only the phase of the functions, so we get an analogue of equation (3.1),
T(2)¢(p) =€ o(p). (3.9)

IRs are related to orbits in the space of functiang) and are marked by the values
p? = (p))? = m?. We denote byT,,(g) representations with a given. We will consider
three possible cases.

(1) m # 0 and is real. In this case the representatifj&) act in the space of functions
on a two-sheeted hyperboloid,

po = +m coshp p1 = Fm sinhd cosg p2 = Fmsinhd sing. (3.10)

t Here and in what follows? = 5, p* and so on.
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At m > 0 it is decomposed in two IRs, or&' (g), which corresponds to particles (upper
sheet,pp > 0), and another oné&, (g), which corresponds to antiparticles (lower sheet,

po < 0). One can consider only IR with > 0 because of,(g) and7_,,(g) are equivalent.

The scalar product at a fixed is given by the equation

2 +00
(f1lf2) :/o d¢/0 0100, 9)p2(8, ¢) sinho do (3.11)

and the generators* have the form
L% = —id, L* = —i(cothd cos¢d, + singdy)
L? = i(—cothd singd, + cos¢pdy). (3.12)

(2) m = 0. In this case the representatiofis(g) act in the space of functions on the
cone,

Po=p p1 = —pCOSp p2 = —pSing. (3.13)

The representatioffiy(g) is split into three IRs: one-dimensiongf(g), which corresponds
to the invariantp = 0 (vertex of the cone), an@," (¢) and 7, (g), which act on the upper
and lower sheets of the cone. The scalar product is given by the formula

2 +00
lfa) = fo dg fo o172 Dea(p, $) dp (3.14)

and the generators* have the form
L% = —id, LY = i(cospd, + psingd,) L? = i(—singd, + pcosgd,). (3.15)

(3) m is imaginary, which corresponds to tachyons. The representalipfy® act in
the space of functions on a one-sheeted hyperboloid,

po = im sinh@ p1 = —im coshh cosg p2 = —im coshd sing. (3.16)

The scalar product is given by the formula

2 400
lfa) = fo dé /O 010, $)92(0. ¢) coshv o (3.17)

and the generators* have the form

L0 = —id, L' = —i(tanhd cos¢d, + singdy)
L? = i(—tanh singa, + cos¢d,). (3.18)

3.2. Angular momentum

We have considered three types of scalar representatioms(&f1), which correspond to

a real mass, zero mass and imaginary mass. In each case the functional representation
spaces are different, these are functions on one- or two-sheeted hyperboloids and on the
cone. Respectively, the expressions for the angular momentum opetéten® different.

Here we are going to analyse the eigenvalue problem for the square of this operator and
its projection in all the cases, using thperepresentation (3.6) and the consideration given

in the appendix. In particular, we will use bases of unitary IR®(2, 1) to decompose
functions on one- and two-sheeted hyperboloids and on the cone.
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(1) m # 0 and is real. The operatois* act in the space of functions on two-sheeted
hyperboloids with the scalar product (3.11). The rising and lowering operatorend the
operator of the square of the angular momentlfrhave the form
Ly = e '*(+icothod/a¢ + 9/36) I? = o + cothei + G

= 962 30 " sin?e ag?°

Let us suppose that a representation of §i¢(2, 1) subgroup has the highest weight
£(6, j)€i?. Then

Ly fi(0) €7 = Ut (—j cothaf;(0) + f;(6)/86) = O (3.20)

(3.19)

and therefore, the highest weight has the fasimhg)/ €/¢. It is easy to remark that at
J < —1/2 (that would correspond to a discrete series) the norm of the state has a power
divergence as a result of a singularityda& 0, and atj > —1/2 the integrand of the norm
grows exponentially with the growth @f (the case of double-valued IRs with= —1/2
is considered below). That means that single-valued unitary IRs with a highest (lowest)
weight are absent in the decompositionZgf.

In the general case the wavefunction (3.5) in therepresentation, which are
eigenvectors of the operatofs?, L°,

L2ty =jG+Dljn LoD =111) (3.21)
can be written in the formNle(coer) gle, wherer’(coshQ) is adjoint Legendre function
and N does not depend ofi and ¢. We are going to use the functioﬂ%l(coshe) =

TG +DH/TG+1+ 1))le(coshe)). The representation is unitary and single-valued at

j =—1/2+ixr/2 and integel (see [15]). Thus, IRF* of M (2, 1) are decomposed in the
course of the reduction into the representations of the principal series,

|\l) = P!(coshp) €'’ //2m j=-1/2+ir/2 (3.22)
400

(M| Ay = (127 tant(A/2)8 (A — X)) Z ALY (V1| = 83,0 /27, (3.23)
|=—00

The representations of the principal serigs, with arbitrary non-zeroe can be
constructed in terms of multivalued functions on a sheet of the hyperboloie- (0
corresponds to the single-valued representations). The eigenfunctiohd afd L° are
the same adjoint Legendre functions (3.22) with= n + ¢, n integer, and with scalar
product (3.23), where the factor tamt./2) has to be replaced by one tanfir/2 + ic))
[15]. At ¢ = 1/2 (double-valued representations) apd= —1/2, the representation is
reducible and is split into two representations with the highest wdight-1/2 and with
the lowest weight = 1/2, the corresponding functions have the fofsinhg)—%/2 eFi¢/2,
according to (3.20).

(2) m = 0. The operatorg.* (3.15), and

Le=¢€""%(pd/op +0/0¢) L? = pd/ap(pd/dp + 1) (3.24)

act in the space of functions on the cgoe= 0. One can remark that the expression (3.24)

for L. passes into the expression (A20) on the complex cone (A9) after the replacement of
p by p?. The scalar products on these manifolds differ only by the limits of integration over
the angleg ([—2r, 2] or [0, 27]). Thus, the representations of the principal sefigs

can be constructed in the space of functions on the cone, however, only the representations
with ¢ = 0 are single-valued and the representation with 1/2 are double-valued.
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According to (A21) the wavefunction of a massless particle with the fixee=
—1/2+ix/2 and with the projectioi has the form in the momentum representation

Ay = p~V2HM2lé jon (M ATy =8((0 — 1) /2. (3.25)
(3) m # 0 and is imaginary. The operatofs* (3.18) and
L. = e (+itanh0d/d¢ + 0/36) izzzAgi—+tanh9ji-——4¥£4—j£i (3.26)
262 30  costfo d¢?

act in the space of functions on one-sheeted hyperboloids. Unitary IRs of the discrete series
can be realized in such a space. The result of the action of the arising operater the
highest weightsf; (9) €/¢ of the discrete negative series IRs must be zero,

L, f;(0)€/¢ =€U+De(—jtanhdf;(0) + af;(0)/360) = 0O

thus, £;(0) = (coshw)/. By analogy, we get the expressiocoshy)/ e /¢ for the lowest
weight of the discrete positive series. Normalizing these functions by means of the scalar
product (3.17) and denoting them Hs(0, ¢) andY;_; (6, ¢), we can write

(—=2j — 2!
72(=2j — 3!
The functionsy; (6, ¢),1 < j (IR 7;") can be derived by the action of the lowering operator
L_ on the highest weight;_; (6, ¢), and the functiong;;(0, ¢), I > —j (IR Tj+) can be
derived by the action of the arising operafor on the lowest weight; ; (0, ¢). By analogy

with the spherical functions we will call (3.27) the functions of the one-sheeted hyperboloid.
The wavefunctions of tachyons in+21 dimensions have the form,

1jl) = Y;1(6, ¢) (ALIATY = 8308 (3.28)

wherej < —1 and is integer (for the multivalued IR < —1/2, and non-integer), whereas
the momentum projectioh > |j|. The functions (3.28), similar to the ordinary spherical
functions, differ from the adjoint Legendre functio®s by a factor only.

In the general case one has to consider eigenfunctions of the opektarsl .2 with
the eigenvalueg (j + 1) and/. These functions have the foryf(0) €/?, where f (9) obeys
the equation

1/2
nﬁw40=< > (coshp)’ e57?. (3.27)

02 9 1

— +tanhd — 2)ro)y=jG+1f@® 3.29

(mﬂ4—an R )f() JG+Df®O (3.29)
which coincides with one for the adjoint Legendre functions,

2 92 0 12 I L I
(1_Z)3722_2Z372_m Pj(z)=_](]+l)Pj(Z)

at z = isinhd. At j < —1 we get the above considered IR of the discrete series. The
functions Pj’(isinhe) at j = —1/2+iA/2 could correspond to the principal series of the
unitary IRs, but the corresponding norm is divergent in this case.

Thus, our consideration shows: in the course of the reduction on the subgen@p 1)
that the representatior=(g) and Toi(g) of M(2,1) with real (in particular zero) mass
are split into IRs of the principal serieg, = —1/2 + ia, L2 < —1/4, whereas are
arbitrary integer. For tachyons, the representatifp&) are split into IR of the discrete
series,j < —1 and integer,L? = j(j + 1) > 0 (i.e. the space component of the angular
momentumL? is greater than the bust ones). For the tachyons the absolute value of the
projection/ cannot be less thaly|, in particular,/ cannot be zero.
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Below we present three sets of wavefunctions of scalar particles, which are
eigenfunctions for the commuting operatorgp,}, {2 po. L% and {p2 L2 L)
respectively.

(1) States with a given momenturyi(x) = e 17*.

(2) States with a given energyo and angular momentum projectioh (in x-
representation),

fx) = P41 o [ pg — m?) (3.30)

wherep, ¢ are the polar coordinates in thé, x? plane, and/; are Bessel functions.
(3) States (3.21) in they-representation with a given orbital momentumand its
projection/. According to (3.22), (3.25) and (3.28), we have three cases:

m=>0 |Al) = P!(coshp) &'’ j=-1/2+ir/2 (3.31)

whered and¢ are coordinates on two sheet hyperbolojds= m? > 0, andP! are adjoint
Legendre functions;

m=0 ALy = p~ Y22 dle (3.32)
whered and¢ are coordinates on the light copé = 0;
m—imaginary [jl) = Y;(0, ¢) (3.33)

wheref and¢ are coordinates on one sheet hyperbolgids= m? < 0, and Y0, ¢) are
one sheet hyperboloid functions (3.28).

4. Generalized regular representation and 2+ 1 spin

In the previous section we considered the quasi-regular representation, which produces a
description of scalar fields or spinless particles. To get a complete picture of all possible
representations one has to turn to the so-called generalized regular representation (GRR)
[13-15]. The GRR acts in the space of functigfie) on the group. The left GRR} (g)

and the right GRRI'k(g) are defined as

TL(9) f(g0) = f(g 80) (4.1)
Tr(g) f(g0) = f(go8)- 4.2)

It is known that any IR of a group is equivalent to that of a sub-representation of the left
(right) GRR [13]. Taking this into account, we can construct a GRRVa®, 1) in the
parametrization (2.5)—(2.7), whegg <> (x,z) < (X, Z), g < (x,2) < (A, U),

0 1 P42
x= (xliix2 ’ xolx ) Z= <2 gi)
r=(afie “W) v=( ) @3)
Using the composition law (2.8), one can get
TL(9)f(x,2) = f(g x, 87 %2) ghx o U X -AHU™H glzeUZ
(4.9
Tr(g) f(x,2) = f(xg,28) xg < X+ ZAZ' 28 < ZU. (4.5)

According to (4.4),X is transformed with respect to the adjoint (vector) representation and
Z with respect to the spinor representationSéf(1, 1). One can also see thatis invariant
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under translations. If one is restricted Zoindependent functions (i.e. by the functions on
the coset space/(2, 1)/SU(1, 1)), then (4.4) reduces to the quasi-regular representation
(3.1), which corresponds to the scalar field case. If one restricts itsetf-ittdependent
functions, then (4.4) and (4.5) reduce to the left and the right GRRUu(L, 1).

Calculating generators, which correspond to the parametérand —«,,, in the left
GRR (4.4), we get

pu=id/ox" =Lt 4 S (4.6)

whereL* are the angular momentum operators (3.3), &hdare spin operators,

o 1 1_- A i I -
S0 = —év(ﬁav + évﬁav St = éva“av - EVO'Zav
SO i - PO n A an
§2 = évfflav + EVUlB‘; [S*, 8"] = —ie""s, [S#, p,] =0 4.7)
andV = (z172), V = (Z1z2). The algebra of the generators (4.6) has the form
[u- Pl =0 [p*.J]=—ie""p,  [J*J']=—ie""],. (4.8)

We denote the generators of the right GRR by the same letters but they are underlined.
The generatorsj“ do not depend on and are only expressed in termszf

p,=—@Ahpp, (or P=-ztPzHh ] =§" (4.9)
o 1 1 U i

= X0 = > 70, §' = X070 = 570”0,

. i i

§ = — X0, — o Xoty (4.10)

wherex = (z1z2), x = (Z1z2). All the right generators commute with all the left generators
and obey the same commutation relations (4.8). The opefaéte:rzj2 and Pauli—-Lubanski

scalarW = pJ = pJ are the Casimir operators. Thus, IRsMf2, 1) can be marked by
their eigenvalues.

It follows from (3.3) thatpL = 0, so that alway$V = pS. The operatoi¥’ commutes
with the total angular momentum operatafé = L* + $*, but not with the orbital
momentum operator&* and spin operators* separately. The operator of spin square
52 = 32 commutes with all the generators of the left GRR. That means that objects,

which are transformed under the left GRR or under its sub-representations, can also be
marked by eigenvalues of this operator. However, that operator does not commute with the

. A2 . PR o
generators;ju of the right GRR, p"*, J | = ie"(p J,+J,p ), similar to the left GRR
case, p*, J?] = ie"(p,J, + J,p,). Thus, the square of spin is not a conserved quantity
in all the right representations, bue is.

Making the Fourier transformation (3.6) in the variables i.e. considering

representations in the space of functigng, z), one can get an analogue of the formulae
(4.4) and (4.5) in this representation,

TL(@¢(p,2) =€%p(p,g72)  p=glpeo P =UTPUY (4.11)
Tr(@p(p.2) =€ “Pp(p,zg)  d < A =ZAZ (4.12)
where P is defined by (3.8). It can be seen that the combinatiofraf — |z2|% and p? is
conserved under the transformations (4.11) and (4.12). The former is always equal to one

and the latter ton?, and depends on the representatighand P are defined by six real
parameters. Three of them (namel,= —Z~1P(Z~ %! for the left GRR orP for the
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right GRR) are fixed and only three of them vary under the group transformations (for the
left GRR two of them set the direction of the momentum).

The classification of the orbits with respect to the eigenvalues of the ope¥atisr
completely similar to that in section 3 for the spinless case. These are ovpifer real
m # 0, 03E and 08 for m = 0, and finally0,, for imaginarym. However, to describe the
IR only one parameter: is not enough, one needs to know the characteristics connected
with the spin.

We note that the left and the right GRR are equivaléTx(g) = T:(g)C, where
C f(go) = f(ggl). Because of that, and also since the left representations are more adequate
to describe physical fields, we are going to consider in more detail only the left GRR of
M2, 1).

Consider the left GRR, which acts in the space of functighs,z), f'(x,z) =
TL(g) f(x,z) = f(g7tx, g71z). Itis easy to remark that

(& 2) = fx,2) (4.13)
where
X =gx=Ax+a < UX+ AU =gz UZ. (4.14)

Thus one can reduce the problem of the classification of left representations to that of the
scalar functions (4.13)—(4.14), using the general scheme of the harmonic analysis [11, 13].
To classify the functiong’(x, z) we are going to use besides the Casimir opergidrs
W, the operator of the spin squaﬁé which commutes with all the generators of the left
GRR. By means of this operator it is convenient to select IRs from the set of equivalent
ones, and, moreover, to classify IRs in the special case of zero eigenvalues of the Casimir
operators, where the functions (4.13) do not dependcorin the latter case IRs of the
Poincare group coincide, in fact, with those of the Lorentz group.
Let us consider in this connection the discrete bagis(z) of the Lorentz group
representatiorfs(g),

SR (z) = S(S + DRs (2) S%Rsc(2) = ¢ Ry (2)
R(z) = Ts(g)Rs(z) = Rs(g*2) (4.15)

whereRs(z) is a column with the component®s; (z). The numberS marks the IR of the
Lorentz group and further we will call the Lorentz spin. The possible values$and the
corresponding spectrum ¢f depends on the type of the Lorentz group representation, see
the appendix and table A1l. The eigenvectgis, z) of the operatorS2 can be presented

in the form

[, =) ¥ ()Rs(2) = Y (N)Rs() (4.16)
¢

where ¥ (x) is a line with components?;(x). On the other hand one can introduce a
basisRs; (z) of the contragradient [11] to thEs(g) representation. In terms of this basis a
function f(x, z) can be presented by the decomposition

flx,2) = ZI/f;(X)ng(Z) = Y (x)Rs(z) Rs(z) = Rs(2)Ts(g™h) (4.17)
¢
where Rg(z) is a line with the component®s,(z) and v, (x) is a column with the

components/, (x). In the case when the representatify(g) and its contragradient are
equivalent, which is the value for example for finite-dimensional IRs of the Lorentz group,
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one and the same function has both representations (4.16) and (4.17). Using (4.16) and
(4.17), one can find

¥ () =Y Ts(g) ¥ () = Ts(g Hy ().

The producty (x)y (x) is Poincaé invariant.

Thus the eigenvectors &2 can be described by the columigx) (lines v/ (x)) with
the components, (x) @z (x)). Their dimensionality depends on the representation of the
Lorentz group. Further we will cally(x) the wavefunction inS-representation or simply
the wavefunction. In such a form all the spinning operators can be realized as discrete
matrices. Their explicit form can be easily found.

As is demonstrated in the appendix any IR of the Lorentz group can be constructed on
the elements of the first column of the matt(4.4). Thus one can be restricted by the
functions f(x, z), with z = {z1, 2} only. In this case eigenvectors of the operaﬁ?rare
homogeneous functions in the variablgsand z, of the power &, and the discrete basis
can be chosen in the form

Rsc(z) = Ns;Zf_{Zgﬂ- (4.18)

The Lorentz IR with & integer and positive are non-unitary and finite-dimensional, whereas
unitary infinite-dimensional IRs correspond $o< O (discrete and supplementary series)
andS = —1/2+iA/2 (principal series).

Let 25 be integer and positive. (The caSe= 0 corresponds to the scalar functions
(3.1), which do not depend on) First considerS = 1/2. In this case the decomposition
(4.17) can be written in the form

f D) =V 1p®u+ 0 Sf=3f (4.19)
Applying the transformation (4.4) to this function

flx,2) = (E/_l/z(x)ﬁ/l/z(x)) (;;) = (Efl/z(g—lx)al/z(g—lx))U—1 (;)

we conclude that the line/(x) = (@_1/z(x)ﬁl/2(x)) is transformed under the spinor
representation of the Lorentz group,

V@) =y@Ut
Taking into account the relatioli —* = ¢3U a3, which is valued for theSU (1, 1) matrices,
we get the transformation low for the columigx) = (Yr1/2(x)¥_1/2(x))" = 03JT,

Y'(x) = U x).
One can find that the same spingrappears from the decomposition

A 3
F (. 2) = Ya20)Z — Y120z = Gz —2) < fifz(g‘x)) §r="f (420

Thus, in the case under consideration, we have two equivalent descriptions. One in
terms of functions (4.13)) anq another in terms of line&) or columnsy (x). One can
find the action of the operatot®* in the latter representation,

Sty (x) = Sy yr(x)
where

y*h = (03 i0?, —ich) ", "1+ = 2n* [y", y']1 = —2ie""y, (4.21)
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are 2x 2 y-matrices in 2+ 1 dimension$. The functionsy = (y1/20)" andyr = (0yr_1,2)"
are eigenvectors for the operats# with the eigenvalueg+1/2).

The producty (x)y (x) = @'(x’)xl/(x’) is the scalar density, which is not positive
defined.

The polynomials of the powerS2can be written in the form

28
) =) U, s()(Cho)22y® 25 = Y (x)Rs(2) (4.22)
n=0
wherey (x) is a(2S+1)-component lineR(z) is a column with element&Cs,)/2z,25" 75,
n=0,1,..., 25, which is transformed with respect to the finite-dimensionalTiRg ')
of the Lorentz groupﬁ’s(z) = Ts(g HRs(z), or in the form

28
[, =) Us a((Co)YH(—2)"  = Rs(@Y(x) S =S(S+Df (423)
n=0
wherevy (x) is (25 + 1)-component columny (x) = FET(x), and(M),,y = (=1)"8,,,.
By analogy with the cas8 = 1/2 one finds

V() = ¥ (x)Ts(g) ¥ () = Ts(g™Hy (x). (4.24)

Here the scalar density has the forr(x)y (x) = ¥ (x)I'y(x). The operators§“ are
(25 + 1) x (25 + 1) spin matricesS* in the space of columng (x), and are generators of
SU(1,1) in the representatioffis,

(8% = 8w (S — 1) n=01...,28

(Sl)nn’ = _% (8n n'+1V (25 —n+ 1)” - 8n+l n'vV (2S —n)(n+ 1))
(Sz)nn/ = _12 (8}1 n'+1vV (25 —n+ 1)” + 6n+1 n'v (2S - I’l)(l’l + 1)) . (425)

For the infinite-dimensional unitary IR ofU(1,1) the values ofS can be non-
integer, S < —1/2 (discrete seriesy-1/2 < S < 0 (supplementary series), or complex,
S =—1/2+ii/2 (principal series), see the appendix. Consider first representations with the
highest or lowest weights. These are all representations of the discrete?%érimd two
representations of the principal seriBs., which correspond t6 = —1/2 ande = 1/2, i.e.
to half-integer spin projections. The eigenfunctions of the opergan the representations
Tsi are negative powes quasi-polynomials (see (A15)),

R =) v (@ (Ch) P (—2) P "2
n=0

f ) =Y ¥y () (Cao) Y2 (—z0)" 235"
n=0

N o, -1 + no_ (—1)”F(n —ZS) 12
The representations of the positive and negative series are conjugated,
TS @' =Ts @) @) =@ @)1 @).

T The generators (4.6) of the left GRR correspond to the parameétesiad —«,,. If we take the generators which
correspond to the parameter$ ande,, then another non-equivalent representatiomfenatrices appears, which
differs from (4.21) by a sign.
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In contrast to the case of the finite-dimensional representations, here the scalar density is
positively defined,

@)Y @ =Y W, 0P @)@ =) s, 0
n=0 n=0

The possible eigenvaluesof the operators® obey the inequalityz| > |S| > 1/2 for the
IR of the discrete series. The spin projectiprcan take on only positive values for the
representationg’, ¢ = —S + n, and negative values fdf; , ¢ = S — n.

For the representatiori the spin matrices* are

(So)nn/ = Spp (=S +n) n=0,12,...

(Y = =5 (80 w0 = 1= 25 = By /(0 = 25)(n + D)
1
(P = o (80 ward/ (0 = 1= 29 + 6,10 /(1 =291+ D). (4.27)

For Ty representations® is the same and®, $? change sign only.
In the case of unitary representations of the principal seffes; —1/2 4+ iA/2, the
functions f (x, z) are presented by the infinite sum,

+00

. j e ) . 1
f(x,z) = Z Vein (X) |n(—Z1)71/27|A/27(8+n)22 1/2—ix/2+(e+n) SZf — _Z(1+ )\Z)f

n=—00

(4.28)

The spin projection; can take on the values + n, wheree € [-1/2,1/2], n =
0, +1,... .AIn the space of infinite-dimensional columgiswith the elements), ., (x) the
operatorsS* have the form of corresponding infinite-dimensional matri§és

(So)rm/ = 8,“1/(8 + l’l) n = 0, :bl, :|:2, c.
i . .
(Sl)n,,r = —5(8,[ wi1(=1/2+e4+n—ir/2) — 8,01 v (1/2+ e +n+1ir/2))

1
(S?)uw = é(arm/-kl(_l/z +e4+n—ir/2) + 8y (1/2+ & +n +11/2)). (4.29)

As a result of the unitarity of the representations under consideration, the corresponding
scalar density

Yoy = Z [Wen ()12

n=—00

is positively defined.

In the case of the unitary infinite-dimensional representations of the principal and
discrete series the matrice8 and S? are Hermitian, whereas in the case of the finite-
dimensional non-unitary representations aready considered they are anti-Hermitian. In the
space of columns with elemens the matricess* and $2 have non-zero elements only on
the secondary diagonals.

The spin projectiort can take on non-integer values for some IRs of the principal and
discrete series. These IRs can be used to describe the anions [4].
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5. Relativistic wave equations and IRs ofM (2, 1)

5.1. Relativistic wave equations

As is known, wavefunctions of relativistic particles are identified with vectors of IR spaces
of the corresponding Poincare group. Thus the problem of the construction of the relativistic
wave equations for particles with different spins can be solved by means of a decomposition
of the left GRR of theM (2, 1) group.

Consider functionsf (x, z), which are transformed under the left GRRMf2, 1), and
which are eigenvectors for the Casimir operatpfs W = jS, and for the operatoﬁ‘z,
which commute with all the generators of the left GRR,

(P> —m®) f(x.2) =0 (5.1)
(puS" — K) f(x,2) =0 (5.2)
(82— S(S+1)f(x,2) =0. (5.3)

The equations (5.1)—(5.3) define some sub-representation of the left GRIR2o1), which
is characterized by mass, Lorentz spinS, and by the eigenvalu& of Lubanski—Pauli
operator. Possible values @& can be easily described in the massive case. Here we
can use a rest frame, wheyi—;ﬁ“ = 8%n signpe. Thus, for particlesk = sm and for
antiparticlesk = —sm, where the spectrum coincides with one of the operatos§. The
latter spectrum depends on the representation of the Lorentz group, see the appendix and
the table Al. Atm = 0 we suppos&k = 0, that is true for IRs with a finite number of
spinning degrees of freedom. The general cases 0 andm imaginary will be discussed
below.

At S fixed and in theS-representation the equations (5.1)—(5.2) have the form

(p* =mH)y(x) =0 (5.4)

(puS* —sm)yr(x) =0 (5.5)
wherey (x) are columns and* are matrices, described in the previous section. They obey
the commutation relations of th&U (1, 1) group,

[S*, S¥] = —ie"S,,.

Let us describe possible cases, which correspond to finite-dimensional non-unitary IRs, and
to infinite-dimensional unitary IRs of the latter group.

(1) Consider finite-dimensional and non-unitary IRsS@f (1, 1). In this caseS has to
be positive, integer or half-integer. According to (5.5),

Yl s™3, +sm) =0,

It follows from the explicit expressions fo§# (4.22) thatS™* = I'S*T", where(I'),,, =
(—1)"8,,». The functionyy = T obeys the equation

¥ (x)(i8" D, + sm) = 0. (5.6)
As a consequence of (5.5) and (5.6), the continuity equation holds
3 j" =0 J* =Sty (5.7)

At S = 1/2 the densityj® = ¥ S% is positively defined (the scalar densify is not
positively defined, as was mentioned before).



6108 D M Gitman ard A L Shelepin

At § = 1/2 the equation (5.5) can be rewritten in the form of & 2 Dirac equation,

([3/13/# —-m)y(x) =0 (5.8)

wherey# = 25" arey-matrices in 2+ 1 dimensions (4.21).

Let us consider the statg&(x, z) = € '"*(Az1 4+ Bzp) with a definite momentum. The
combination|A|2 — | B2 = C remains constant under thé(2, 1) transformations. One can
setA or B to be zero in a certain reference frame, depending on the sigh & the rest
frame we get two wavefunctions, which cannot be connected byv&gy 1) transformation,

e irz, (C > 0), g 1Pz, (C < 0). They correspond to two different directions of the
spin projection on the axis®. Representations d¥ (2, 1) atm > 0 andS = 1/2 are split
into two IR, which correspond to particles with spin projectiens 1/2 ands = —1/2.

The caseC =0, f(x,z) = Ae P (%17, +6d%z,), A # 0, corresponds to the massless
particle. Indeed, a straightforward calculation shows that the action of the op@t&ion
the function(€?:z, + d?z,) gives zero ap® = p, p = pcosp, p2 = psing, ¢ = g1 —@»
(see also (5.35)). Thus &= 1/2 we have three cases in accordance with possible values
of the Casimir operatops$ (+m/2, 0).

At S = 1 the decomposition (4.17) has the following form

fx,2) = Y1(x)Z3 — Yo(x)vV2z120 + Y1 (x)2? (5.9
wherey (x) = (Y1(x)vo(x)¥_1(x))7 is subjected to the equation (5.5)
(PuS" —sm)y(x) =0 (5.10)

10 O 1 /0 -1 0 i (0 10
s°=<o 0 o) 51=—<1 0 —1) 52=—<1 0 1)
00 -1 v2\o 1 o v2\p 1 0

where the spin projectiontakes on the values1, 0. If one introduces the new (Cartesian)
componentsF,,, Fi = —(¥_1 + ¥1)/v/2, Fe = —i(Yn — ¥_1)/~/2, Fo = o, instead of
the componentg(x), Yo(x), ¥_1(x) (cyclic components), then (5.5) takes the form

0" F, +smF’ =0. (5.11)
A transversality condition follows from (5.11),
9 F" =0. (5.12)
One can see now that the equations (5.11) are in fact field equations of the so-called
‘self-dual’ free massive field theory [24], with the Lagrangian

1 S L
Lsp= HFuF" = 5 & Y F.0,F, =0, (5.13)

As remarked in [25] this theory is equivalent to the topologically massive gauge theory [1]
with the Chern—Simons term. Indeed, the transversality condition (5.12) can be viewed as a
Bianchi identity, which allows the introduction of gauge potentié)s namely a transverse
vector can be written (in topologically trivial spacetime) as a curl:

Fh=e"3,A, = 36" F,,

whereF,, = d,A; — 9, A, is the field strength. Thust* appears to be dual field strength,
which is a tree-component vector irH21 dimensions. Then (5.11) implies the following
equations forF),,

8, F" + %emff’ Fup =0 (5.14)
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which are the field equations of the topologically massive gauge theory with the Lagrangian

Los = —211 I %M“FWAA. (5.15)
One can find that finite transformations 8f(2, 1) act on the Cartesian components
as F"(x") = A, F"(x). Here the combinatiorfz‘ﬂf“ = C(x) is preserved.C does not
depend orx for states with a definite momentum. The c&se- 0 corresponds to particles
with real massn # 0, the cas& = 0 corresponds to massless particles. The correspondent
wavefunctions will be presented below.
If a particle has integer or half-integer spin projection then the correspondent
representation ofU (1, 1) of a minimal dimension is the finite-dimensionB(g), where
S = |s|, and dimTs = 2S + 1. To describe states with fractional spin projections one has
to consider infinite-dimensional representaticis(1, 1).
(2) Consider now unitary infinite-dimensional IRs 81/(1,1). In this caseS can
be non-integer,S < —1/2 (discrete series)-1/2 < § < 0 (supplementary series), or
complex,S = —1/2+ix/2 (principal series), see the appendix. Matriésare Hermitian
and according to (5.5) the conjugated equation has the form

W)Y, + sm) = 0. (5.16)
As a consequence of (5.5) and (5.16) the continuity equation holds
8,1/.].” =0 jlt — K/ITS“I/I. (517)

In IR of the discrete positive (negative) seris= 5% is positively (negatively) defined.
Besides, for unitary IRs the scalar densityy is also positively defined in contrast to the
finite-dimension case. For a discrete positive sesigsmn take on only positive values,
s = —§ + n, and for negative ones only negative= S —n, n = 0,1,2,.... The case
s = £S has already been considered [4, 20, 21].

There are cases when the equations (5.4) and (5.5) are dependent. Indeed, multiplying
(5.5) by p,.S* + ms one gets

(PuS" + ms)(puS* — ms)Y(x) = (pupulS*, S} — m?sH)yr(x) = 0. (5.18)

In the particular cas§ = 1/2 we haves = £1/2, S* = y*/2 and (5.18) is merely the
Klein—Gordon equation (5.4). In the general case the matd¢esare noty-matrices in
higher dimensions and the squared equation (5.18) does not coincide with the Klein—Gordon
equation.

As one can see from the consideration presented, the construction of the relativistic
wave equations in 2 1 dimensions is, in a sense, simpler than one in B dimensions.
That is connected with the vectorial nature of the operators of the angular momentum and
of the spin. In(3 + 1)-dimensional case the above mentioned operators are tensors and it
is namely this that complicates the problem.

Different IRs of M (2, 1) with m # 0 are marked by the spin projectiean However,
one can see from the previous consideration, that the classification by the Lorenszispin
also useful.S defines the dimension of matrix representation of the spin operators in (5.4)
and (5.5).

One can easily see that massive particles have only one polarization state. Indeed, in
the rest frame the equation (5.5) has the form

(8 —s)y =0. (5.19)

The spectruns coincides with the spectrum of the opera¥; which is not degenerated
as was demonstrated above. Thus a fixatiorns déads to only one solution of (5.5).
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For § = 1/2 and S = 1 that property was demonstrated explicitly in [4]. One can
reach the same conclusion, remarking that the non-relativistic group of movements is
M) = T(2)x)S0(2), where the groups O(2), which describes the spin, is an Abelian
one and has only one-dimensional IRs.

In the case of the infinite-dimensional unitary representations of thel2lLorentz
group, it is easier to deal with the functiorf$x, z), but not with an infinite number of their
componentsy, (x) in the S-representation.

As an example let us consider the plane wave solutions at 0. ForS§ = 1/2 and
S = 1 such solutions were analysed in [4] where it was noted that all the components are
connected, that means that the number of spinning degrees of freedom is one. Here we
are going to present similar consideration for all the representations of th& Porentz
group, which have lowest weights, namely, for finite-dimensidghalS > 0, integer or
half-integer), and for infinite-dimensional unitary representatiBiis(S < —1/2).

The wavefunction in the rest frame, which corresponds to the spin projection-S,
has the formsz\IJ(po), po = E = +m. Acting on it by finite transformations, we get at
E > 0 a solution in the form of the plane wave, which is characterized by the momentum
P
f(p,2) = (uitr — Zup)®¥(p)  P=U'RU™H  Po=ml (5.20)

The momentunp does not depend on the parameperp® = E = mcoshy, —py +ip, =
m sinhg €®. Let us putp = —w (in this casey; is real). Using the relations (2.7), one can
express the parameteis andu, via the momentunp,

75 V2m(E + m) E+m
In the case of finite-dimensional representations one can$yet 2 componentsy; (p) as
coefficients in the decomposition of the function (5.20),

Vs u3’
W(P)z(...)z(...>\lf(p) (5.22)
Y_s i3S
_s- (E +m)S~“(=p1+ip2)***
Ve = O e = G ey Y 62)
In the particular cas§ = 1/2 we get [4],
_ 1 —p2+ip1
Y(p) = m ( E+m )‘I"(P) (5.24)

For representations of discrete and principal series similar results hold. For example, in the
former case one can get the formula (5.23), wh&fe are the coefficients from (4.26) and
(=-S5, -S+1,....

Among the above considered relativistic wave equations are ones which describe
particles with fractional real spin. These equations are connected with unitary multivalued
IRs of the Lorentz group and can be used to describe anyons. In spite of the fact that the
number of independent polarization states for massive12particles is one, the vectors
of the corresponding representation space have an infinite number of componehts in
representation. Thusg-representation is more convenient in this case.

5.2. Dirac equation and CS evolution

It turns out that the 2- 1 Dirac equation appears also in the case of the infinite-dimensional
unitary IRs of the 2+ 1 Lorentz group (discrete and principal series with highest or lowest
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weights) as an equation for CS evolution. To see that, let us take, for example, spinning
CS, related to the highest (lowest) weight of theTR (7,") (see the appendix),

Yo (x,2) = (z2it®(x) + Zoit ()% (5.25)
Ui (x, 2) = (zaut(x) + 2 (x))* ut? — [u?? = 1. (5.26)

Here S can take on the value 1/2, that corresponds to the principal seriesSof(1, 1), or
the valuesS < —1/2, that correspond to the discrete series of the grous iAteger or half-
integer the representations are single-valued. We derjgnd, z) to be an eigenfunction

for the Lubanski—Pauli operatdy = pS,
WF (x, 2) = msy) (x, 2). (5.27)

The left-hand side of (5.27) takes the form, after the action of the ope¥ator
S(Po(Zau® — zau™) — pr(zau® — Zou") — i po(zau® + Zou")) (zau® + Zou®) >+

2
= S(Zaz1) puy” (Zlgi) (zaut + Zou?)>5 1.

Thus we obtain an equation for the parameters of CS (5.26),

2
(ﬁﬂy“ - ;m) (Z@;) —0 (5.28)

which is a 2+ 1 Dirac equation with masa’ = (s/S)m. The same equation controls the
evolution of the parameters of CS (5.25), and also appears both in the& easel/2, and
for arbitrary § < —1/2.

5.3. IR of M(2,1): classification and bases

Here we are going to derive explicit forms of eigenfunctions for sets of commuting operators
of M(2, 1), decomposing GRR in IRs. A classification and a description of the unitary IR
of the group will also be given.

It is possible to construct bases for particles with spin, which consist of eigenvectors
for different sets of commuting operators. For example, for sets of operaigis;

W, S2), (W, 82,2 J9), (b, W.J%, 32 82 po, L% §° (we did not include the
Casimir operato¥ in this set since it does not commute with the operatotsand §*
separately)), (p,, 13#, W), and so on.

Let us consider states, which are eigenvectors for the operfzﬁonﬁ’, S2 (plane waves).
They can be written in the following form

Fos(x,2) = €77 f5(p, 2) (5.29)

where f5(z) is a homogeneous function on the variabigs 7z, of the power 3. These
states are important to classify IRs &f(2, 1) by means of the little group method.

It is known that IRs of the motion groups of the pseudo-Euclidean spaces (Poincare
groups) are marked completely by means of parameters of orbits in the space of momenta
and by numbers, which characterize the IRs of a stationary subgroup of a state, belonging
to the orbit (little group) [11]. Thus let us consider three casess 0 (orbits O, 0,),

m = 0 (orbits Of, Oy, 09), andm? < 0 (orbits 0,,).

(1) At m > 0, in the rest framepS = +m 8P, so that the eigenvectors of this operator

with the eigenvaluestms are

frs(x,2) = €775 (—zq) 5, (5.30)
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One can find the stationary subgroup of the state (5.30) from the conditidRy(U 1) =

Py, where Py = diag(m, m). The matriced/ = diagle '#/2, €¢/2) obey the condition and
form a one-parametric subgroup, which is isomorphic to the giéup with the generator

JO = L%+ §9 The eigenvalues of this operator together with the characteristic of the
orbit mark IR of M(2, 1). Let us denote such representationsigs and7,, . They are
single-valued at integer and half-integer, whereas and —ms are the eigenvalues of the
operatorﬁ§ in these representations, respectively. Subjecting the state (5.30) to a finite
transformation of¢ (2, 1), we get the function

fros.5(x,2) = €PN (Zauy — 21i2) 5™ (Zaup — z2i1)° ™ P =UPy(U™H'. (5.31)

The spinning part of the function is the CS$#/ (1, 1). The parameters,, i, are expressed
via the momentunp’ (see (5.21)). This function describes a particle with real mass0,
momentump’, Lorentz spinS, and the spin projection The normalization coefficien¥s
depends on IR series, see the appendix.

The wavefunction of a massive particle with Lorentz sgin energy po, angular
momentum projectiord, and spin projectiort on the axisx®, has the form, according
(3.30) of

Fros.ca(x,2) = €7 g (o [ p2 — m2)Ng 25 (—21) 7. (5.32)
(2) The wavefunction of a massless particle with = p(1, 1, 0) is

fp,S(-x9 Z) — —ip(xO_xl)fS(Z) Wqus(x’ Z) — pe—ip(x‘)_xl)(svo _ Sl)fS(Z)-

The operato’®— §? is the generator of the stationary subgroup of the state.UTheatrices,
which correspond to the subgroup, obey the condition

U lPaUH =P P, =<P P)
01(U™ ) 01 01 b p

and have the form

U:i(l—l—_la Ia_ )
—ia 1l-—la

They form anR ® Z group, whereR is the additive group of the real numbers, and
is the multiplicative group, which consist of two elemefits —1}. These two elements
correspond to the identical transformation andgto= 27 rotation around the axis®,
respectivelyU = I andU = —1I, wherel is the unit matrix. One can see from (4.4) that
the latter rotation does not changebut changes the sign af T (2r7) f(x, z) = f(x, —2).

The eigenvectors of the operats? — §%, which correspond to the eigenvalueshave
the form

f:) = F %) exp(x;fZ) . (5.33)

The wavefunctions of a massless particle with the momergjunp, 0), Lorentz spinS, and
the spin projectiork. on the direction of the momentum can be written as

fosax,2) =70 (g — 2P exp (Am) ' (5.34)
22—
They are eigenvectors of the operattitsand S2 with the eigenvalue& = pi andS(S+1).
These functions change sign under #wransformations (rotations o2 at half-integers
and remain unchanged &tinteger. We denote IRs, which correspondite= 0, by Tofg,,(
and7y, . Heree = 0 (S integer) ore = 1 (S half-integer) mark IRs of the& group. One
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can see thatS®—81)" = [(Zo—z1)(8/3214+0/072)/2]" = [(Z2—z1)/2]"(8/dz1+0/072)", and,
therefore, the operatcﬁ0 — 8% can only have zero eigenvalues in the space of polynomials.
Thus as was mentioned in [3], eigenvalues of the Casimir ope¥atare zero for the finite-
dimensional in spin wavefunctions of the massless particles. That can be seen directly using
the explicit form of the states (5.33) and (5.34). Atz O there is an exponential factor
dependent op, its z-decomposition leads to an infinite number of wavefunction components,
similar states appear in the tachyon case.

Table 1. Unitary single-valued IRs oM (2, 1).

Mass Eigenvalue
orbits IR W= pS States Remarks
m > 0, T,f, ms (5.31) s > 0, integer or half-integer
o, o0, Tos —ms
m =0, Tofg 0 (5.35) e=01
05,05 To, O
Totx,e K = px (5.34) K # 0, real, infinite-dimensional IR
TO,K,s K = pA
m2 < 0, Tm,O,s 0 (536)
O Tm.oe imo (5.36) o # 0, real, infinite-dimensional IR
m =0, T;, g O See the Discrete series 8t/(1, 1)
08 Ts.e 0 appendix  Principal series 6fU (1, 1)
Ts 0 Supplementary series 6U (1, 1)
70 0 Invariant

At 1 =0, fs(z) = (z1 — 720 and if § > 0 integer or half-integer, then the number of
components is finite (is equal t&52- 1). We denote IRs at = 0 by TOTE and 7, where
¢ = 0 corresponds to the integer and= 1 to half-integerS. The case of an arbitrary
direction of movementp™ = p(1, cosp, sing), can be derived by a rotation around the
axisx, U = diag@¥/2, e¥/2), thenz} = z; /2, 7, = 7. In particular, at. = 0,

foos(x,2) = €77 (z1 €792 — 7,d9/%)%5 (5.35)

This function describes a massless particle with the momentuamd Lorentz spirs.
(3) In the case of tachyons, the state with= p> =0, p; = im,

frs(x,2) = €7 fo(2)

has the stationary subgroup, which can be found from the condifioh?, (U 1) = Py,

where
_ coshv/2  isinhg/2 (0 —im
U==+ (—isinhe/Z cosh9/2) b= (—im 0 ) :

This subgroup is isomorphic tR® Z and has the generatafll. The eigenvectorg), s(x, z)
for the operatorss® and S2, with the eigenvalues and S(S + 1) respectively, have the
form
] . o . . . . - | —io
Fr5.0 (8, 2) = €7 (2o 4 iz) 19 (2 — iz) T = e (22 4 D)8 (M) . (5.36)
Z2+121
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Functions f,, s - (x, z) are the eigenvectors for the Casimir operatizirsand p? with the
eigenvaluespio and —pf, respectively. o has to be real for unitary IRs, therefore,

for o # 0, representations, which correspond to the imaginary mass case, are infinite-
dimensional in the spin. The case of arbitrary direction of the momentum can be derived
by means of a rotation, as was done above for the real and zero mass.

(4) Unitary IRs ofM (2, 1), which are connected with the orkmg, are IRs ofSU (1, 1).

The classification of the single-valued unitary IR of th&2, 1) = T(3)x)SU(1, 1)
group are summarized in table 1.

The IR states ofU (1, 1), corresponding to the orb'ﬂ)g, do not depend om and are
invariant under translations. The sigs (or —) at T is related to the sign of. The
characteristic ‘infinite-dimensional’ means infinite-dimensionality in the spin space.

The finite-dimensional spin wavefunctions of massless particles and tachyons are zero
modes of the operatdi.

To complete the picture one has to add to this table multivalued representgfipasmd
T, s at non-integer 2 and multivalued IRs oSU (1, 1), described in the appendix. The
explicit form of states, which are transformed under the representdfjpnand7,, ; at non-
integer 2, can also be given by the formula (5.31), however, in this caskscomposition
generates an infinite number of components. Just those IRs are used to describe anyons.

Appendix. Unitary IR and coherent states of theSU (1, 1) group

The 2+ 1 Lorentz groupS0O(2,1), and closely related groupSU (1,1) and SL(2, R)

with the same algebra, have been studied in numerous papers [13-17,22,26-40]. Their
finite-dimensional IRs and unitary IRs (discrete series) are used to describe $pis In)-
dimensions [4]. As is knownSO(3,1) has only principal and supplementary series of
unitary representations, and the principal series is used to describe spinlindBnensions
[41,42]. In this connection, in spite of everything, it is important to consider the same
series ofSO(2,1) or SU(L, 1).

We are going to describe unitary IRs &/ (1, 1), their discrete bases and corresponding
CS. The consideration, to be complete, is going to repeat some known results, but also to
present some new ones. For example, we are constructing CS in unitary IRs of the principal
series at arbitrary fractional projections of the angular momentum in addition to [39], where
only integer ones were considered. We construct unitary IRs, including multivalued, in
spaces of functions on various manifolds connected With(2, 1) or SU(1, 1), whereas
usually they are restricted to the unit disk or to a circle. In particular, we consider
decompositions of functions on a cone and one-sheeted hyperboloids with respect to unitary
IRs of SO(2, 1).

Consider the left representatidh(U), U € SU (1, 1), acting in the space of functions
S ),

TW)fw) =fWU™ )  v= (Zl> . (A1)
2
The matrices/ ~* can be parametrized by two complex numbetsu?,
Ut = ( ‘1 _”2) w2 — w22 = 1. (A2)
—U ui

The combination
1 = vaf® = C (A3)
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remains invariant under thgU (1, 1) transformations. Generatoyg, whigh correspond to
one-parametrical subgroups with parametetg' (see (2.3)), and arising, and lowering
J_ operators have the following form in this representation

JO=—(1/2)(1d/v1 —v20/v2) T =wid/v; Ty =vy0/v1

Jt = (1/2)(Jy = J2) = (1/2)(v20/v1 — v1/v2)

J? = (/25 + J-) = (/2) (013 /vz + v20/v1). (A4)
They obey the commutation relations

[J*, JV] = —ie" ], [Jy, J]=2J° [J0, Ji] = +Js
so thatJ? is a Casimir operator,

J2 =T, 0" = (Jo)? + Y J+J_Jy)

= ;11(1)18/81)1 4 v20/0v2) (v10/dv1 + V20/dv2 + 2).
Let us take functions of the fornf,,,,(v) = vi'vy®. The action of the generators on

these functions can be fouhd
P fore = e Pl =G Dy om="20" 2
J_ funs = N2 farstng—1 Tt funs = 11 frg—tnpr1- (AS)
Thus, quasi-polynomials of the powey 2orm an IR space j characterizes the IR),

and J_ are arising and lowering operators for the projection of the angular momentum
m = (ny —n1)/2. If np, > 0 and is integer thery,,,, belongs to an IR which has the
lowest Weightvf’; if n; > 0, and is integer then the IR has the highest We@’u if both

n; 2 0,i = 1,2, and are integer then the IR is finite-dimensional (has both the highest and
lowest weights). For unitary IRs U (1, 1): (JO)*" = J°, Jf = —J, that meansi; — ns

is real, andni(n2 + 1) < 0, na(n1 + 1) < 0, whereas for the IR ofU(2): Jf = J; and

ni(nz +1) > 0,na(ny +1) > 0 [22]. At a givenj one can select

Nnmzv;lv;z (A6)

as elements of a discrete basis in the space of functiggs), where N,,,, is the
normalization constant, an¢y = j — m, n, = j + m.

A classification and weight structure of unitary infinite-dimensional and non-unitary
finite-dimensional IRs 08U (1, 1) is presented in figure Al.

To describe the IRs of different series one has to define in more detail the space of
functions f (v). At different C in (A3) one can use the following parametrizationvgfand
V2.

C =0:py = pdto)? vy = pd@ 92

O0<p<+4oo 0<p<drm O<w<2n (A7)
C = 1:v, = coshy/2) ¥t®)/? v, = sinh(§/2) @=9)/2

0<0 <+00 0L <4n 0<w< 2m. (A8)

The case of negativ€' (C = —1) is reduced to (A8) by the replacememnt <> v,. The
parameter is not changed under the group transformations in the case (A7), thus, there are

1 We are going to use here the notatianfor the anglular momentum projection (the same was used for the
mass), hoping that this will not lead to a misunderstanding.
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A -
ni J n2

finite-dimensional,; > 0

principal, j = —1/2+iA/2

supplementary-1/2 < j <0

e N

discreteT —, / \ discreteTt,

j<-=-1/2 j<-=-1/2

Figure Al. Weight diagrams for unitary and finite-dimensional IRsS@f (1, 1).

two complex manifolds, on which the group is acting transitive: the complex hyperboloid
(A8) and the cone,

C=0:v1=/oei")/2 v2=,oe*i“’/2 O0<p<+oo 0< ¢ < 4. (A9)

Using the componenta, v,) of the spinor and the complex conjugate componentsit),
one can construct objects®, x1, x?), which are transformed under the three-dimensional
vector IRs withj =1,

x0 = (jval? + [v2?)/2 xt = (V102 + v102)/2 x? = (V102 — V1v2) /2 (A10)
x° = vy xt = (24 03)/2 x? = (2 —v3)/2i. (All1)

The vectors (A10) and (A1l) have the same transformation properties, since the spinors
(v1, v2) and o, v1) are transformed equally. The latter can be easily checked, using the
explicit form of the matrix (A2). Substituting (A9) into (A10) or (A11), we get the cone

10 = p? x! = —p?cosy x? = —p?sing xg — xf — x% =0. (A12)

Substituting (A8) into (A10), we get the two-sheeted hyperboloid

x% = coshy x*= —sinh@cosy  x?=—sinhdsing  xZ—x?—x3=1 (A13)
If v, are periodic ing with the period 4, thenx, are also periodic with the periodr2

Let us turn first to IRs of the discrete seri@;‘(m =—j,—j+L—-j+2...) and
T (m=j,j—1j—2..),j <—1/2, the theory of which is quite similar to that of the
finite-dimensional IR. The IRt and 7~ can be realized in the space of functiofi&),
wherev; and v, belong to the case (A8). The scalar product of functions on the complex
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hyperboloid,
1 (-
i1 )= o [ Fafad(ual = of? = 1 Fus o

1 2 27 oo
= f dw / do f f1f2sinhd db d?v = dRv dSv  (A14)
872 Jo —21 0
allows one to normalize the elements of the discrete b§§iatj < -1/2,

; D" (—=n)\"? ., .,
b = (0 L) = (SR ) g

3 ((—1)"21“(—”1)
~\ nalT(=2))
The projectionm, and thereforej(j = mmax IN T, j = —mmin in Tj+), have to run
over the integer and half integef,= —1, —3/2, —2, ..., for representations in spaces of
single-valued functions.
The lowest weight(v | j —j) = v;’ has a stationary subgroufi(1) and CS are
parametrized by dots of the upper sheet of the two-sheeted hyperksiloid, 1)/ U (1).
An explicit form of CS can be obtained by the action of finite transformations on the lowest
weight,

1/2
) (cosh6/2))"(sinh(§ /2))"z @mie+4th) dilw+2th) — (A]5)

Vi) = (v | ju) = (@101 + uzv2)® (A16)
whereu = (i1, —uy), i1 = COsShby/2) €"9/2, —u, = sinh(h1/2) e "¥1/2 are elements of
the matrix (A2). The CS overlapping has the form

(" | juy = 85 (uyity — ituz)® . (A17)
A detailed description of CS of the discrete series6f(n, 1) can be found in [40], and of
SU(1,1) in [22,39,40]. The repres:entatioﬁ’;r and7;” are conjugate; the discrete basis
T;” can be derived by means of the complex conjugation from (A15) or by the replacement
V1 < Vo

For the functions, which are transformed with respect to one and the same representation

Tj+, the integral ovew in (A14) gives 2r. The completeness relation at a givgmran be
written both in terms of the discrete basis and in terms of CS,

j .
1= m;m|jm><jm| = 2277 !

The parametelj takes discrete values and the basis functions are orthonormalized on
the Kronecker symbob;;; for the single-valued IR of the discrete series, whereas for
the principal series the condition of the orthonormality containsstfienction §(j — j’).
Principal series can be constructed both in the space of functions on the complex hyperboloid
(A8), and on the cone (A9).

One can construct the principal series on the cone (A9) with the scalar product

27 oo
(fil fo) = (1/8772)/2” dy /O Jilp, @) fa(p, @)p do. (A19)

We getCy,n, =1, n1+n2 =2j = —141A, 2n = ny — ny, for the elements of the discrete
basis (A6) in the case of the principal series,

Jy = €eM%((1/2)pd/0p +i0/0¢) Jo=—id/d¢p (A20)
(p@ | Am) = U;-llvgz — p—1+ik ém(q)-&-4rrk) (um | )»/m/) =50\ — )\/)smm,

(pe | p'¢"y = A/pp)s(Inp —Inp"Hd(p — ¢") = (1/p)8(p — p)8(p — ¢'). (A21)

2 e’}
/ dgs / |j6101) (611 Sinhéy . (A18)
-2 0
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Two IRs in the space of single-valued functions (with integer and half-integehe first
and the second principal series accordingly to the terminology of the work [15]) correspond
to each giveri,

R 1 2 00 1 400
i= = | d dp= — dr S [am) ().
o7 /_2” <p/0 lo@)(pplp dp 8712/_ Xm:I m) (Am|

oo

The summation in the last equation runs over all integer and half-iniegeviultivalued
IRs are characterized not only bybut also by a numbet, |¢] < 1/2, which gives the
nearest-to-zero value o (for single-valued IRg = 0 or ¢ = +1/2). Elements of the
infinite-valued IR space are not periodic ¢n Thus, an arbitrary representation of the
principal series is defined by two numbéps ¢), wherej = (—1-+iA)/2 characterizes the
angular momentum squard? = j(j + 1) = (—1 — A?)/4, ande characterizes possible
values of the momentum projectian= ¢ +[m]. There is a certain analogy with IRs of the
principal series o 0 (3, 1), which are defined by two numbegs, S), whereS corresponds
to the spin [41,42], and defines the square of the four-dimensional angular momentum.
The representation of the principal series, is reducible at = 0 and|e| = 1/2, and
is split into two IRs: T_+1/2(8 = —1/2) and T ,(¢ = 1/2); ¢ = £1/2 corresponds to one
and the same IR at # 0.
One can remark that according to (A21), thalependence of functions on the cone
is the same at a fixed, and it is possible to consider the space of functigiig) on the
circle, what they are usually doing, by considering the principal series of IRs. However,
such a reduction of the representation space is not always reasonable because the space of
functions on the cone sometimes appears naturally in different physical problems.
To construct CS one has to consider orbits in the representation space, factorized with
respect to stationary subgroups [39]. The stationary subgroup of theJstate 0) = p~1+i*
is U(1), and CS, which correspond to integens = 0), are parametrized by the dots
(@, ¥) on the upper sheet of the hyperbol&id/ (1, 1)/U (1). (Such CS were constructed
in [39,43] in the space of functions on a circle.) Substituting = cosh@/2) €72,
—up = sinh©/2)e V2, p' = p(coshh + sinhd cosy + ¢))¥? in (A1) and (A2), we
get CS in the form

(0@ | 10v) = (p') 1+ = p~* (coshh + sinh6 cos(yr + @) Y/2 /2
1
(Am | 1109) = 78#//@’" | p@)(p@ | 110%)p dp dy

2
= (1/27)8(A — A1) / €% (coshy + sinhé cosyr + ¢)) Y2 */2dy
0

=5k~ A1)

T+ 1) . o
Fom  1/24 ihj2) v (costo) e (A22)

where P, , i, »(costp) is adjoint Legendre function. At: = O the latter goes over

to zonal harmonicP_1,4ix/2(coshy) (it is also called the cone function [15,44]). To
get CS at arbitrarys one has to act by means of finite transformations on the state
|Am = ¢) = p—l+ik eisgo,

i - —1/2+i —vyiip + voup \°
(pp | Lebyr) = (Vi1 — vouo)(—viip + vzul)) 1/2+ir/2 <1221>

Vil — VU2
= p~ M (coshy + sinhd cosp + )~ Y22
(cosf(H/Z) exp[—i(¢ — ¥)/2] + sinh6/2) expli(p — ¥)/2]
cosh0/2) expli(p — ¥)/2] + sinh(6/2) exp[—i(¢ — ¥)/2]

)8 . (A293)
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The casee = 0, which we have already considered, and= +1/2, correspond to
representations in spaces of single-valued functions. In the latter case-at1/2 we get

(P9 | 11/2,0) = (vaii1 — voup) *vaiis — vou|”

(P9 | & =1/2,09) = (—viitz + vaur) ~Hvaiis — voua|™. (A24)
At 1 = 0 the CS take a simple form
(pp | 01/2,09) = (vaiiy — vauz) > (p@ | 0—1/2,0v) = (—vaiia + vous) "+ (A25)
which coincides with the explicit form of CS of the discrete series (A16) (in this case, the
only difference between the CS of different series consists of different domainsasfd
v2, See (A8) and (A9)).

Let us turn to IRs of supplementary series. The integral in (A19) is divergent aj .real
However, one can use a convergent ‘non-local’ scalar product

il fo) = / / 70 foxa) ] (x1. x2) dxy ez (A26)

where the kernel function/(x;, x2) has to be invariant with respect to the group
transformations. For the cone one can select an invariant expre@sion— vyv,) =
2isin(p/2—¢'/2)pp’. At a fixed j representation functions have the fogfi f(¢). Let us
select/ (x1, x2) = |(v1v]—v2v5)/2|7%, then the integrand in (A26) ifi(¢) f2(¢")| Sin(p/2—
¢'/2)|7%. It does not depend op, so that at a fixed (A26) takes the form

2 27
ol fa) = / @) f2(0)] Sing /2 — ¢/ 12)[ 2 do d’ (A27)

27 J =21

where—1/2 < j < 0, the latter is necessary for the scalar product to be convergent and
positive defined.

For the single-valued representations of the supplementary seriesnteger, for the
multi-valued representations one has to introdeide| < |j| (restrictions ore follow from
the unitarity of the representation, see figure 1). Matrix elements of the supplementary
series IRs are expressed via the so-called torus function [44].

An invariant dispersion with respect £0 (2, 1) transformations can be written as

AJ? = (J, T ) (TR = (ATO? — (ATYH2 — (AT (A28)

It has the valuegj (j + 1) — m? on the state$jm). At a givenj CS minimize the absolute
value of the dispersion (A28). For CS of the discrete seid$ = j, and for the principal
seriesAJ? = —1/4 — )\?/4 — ¢2.

We now present a short summary of IRs studied.

For single-valued unitary IRs ¢fO (2, 1) the angular momentum projectienis integer,
for single-valued IRs 0§ U (1, 1) it is integer or half-integer. For multivalued unitary IRs the
projectionm can take any real values. Here we find an essential difference from the Lorentz
group in four dimensions, for unitary representations of the group this projection is always
integer or half-integer. That is connected with the existence of the non-Abelian compact
subgroupSU (2) ~ SO (3). Representations of the discrete seﬂfé’s(g) of SU(1,1) atreal,
integer and half-integef < —1/2 are single valued and have the highest and lowest weights
m = % j. Representations of the principal serigs(g), j = —1/2+ix, —1/2 <& < 1/2,
are single-valued at = 0 and ats = 1/2. At ¢ # 1/2 representations are irreducible and
have neither highest nor lowest weightsgat 1/2 the representation is split in two ones:
T;12(8) with the highest weightn = —1/2 andefl/Z(g) with the lowest weighin = 1/2.

Now we have to make some technical remarks. As follows from our consideration,
representatives of all non-equivalent finite-dimensional and unitary IRZ/@l, 1) can be
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Table Al. Unitary and finite-dimensional IRs &fU (1, 1).

Series S 14 S-v or m-v
Finite-dimensional:Tg S > 0, integer S —n, S-v
or half-integer n<2S
Discrete: S <-1/2 s-vatS=-1-n/2
T;’ —S+n
Ty S—n
Principal:
Tse, —1/2<e<1/2 S=-1/2+ir/2 e+£n s-v ate =0,1/2
T—1/241/2 = Tj—l/z 52} T__]_/zy
T, §=-1/2 1/24+n  sv
T S=-1/2 -1/2—n sv
Supplementary: -1/2<85<0
Tse, lel < |S] etn s-vate =0
TfEe=29) e4n m-v
Ty (e=-9) E—n m-v

constructed in the space of functions on only two complex variahlesmdv,. At the same
time, studying the left GRR (4.4) of th& (2, 1) group, it is convenient to use functions on
the elementg;, z, of the first column of the matriX. In such a space the spin generators
(4.7) are reduced to the form

S0 = (1/2)(218/21 — 720/72) ST = (1/2)(218/72 + 720/21)
§2 = —(1/2)(210/72 — 720/21). (A29)

In fact, after the renotatiop; — v1, Zo — v, they go over to the generators (A4).

The IRs of SU(1, 1) are summarized for the case of spin operators in table A1. We
denote the eigenvalue &P as¢ and the eigenvalue &2 asS(S + 1), that corresponds to
the renotationj — S, m — ¢. The parameter in table Al is integer and > 0; s-v or
m-v signify single-valued or multivalued IR respectively.
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