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Abstract. Using the generalized regular representation, an explicit construction of the unitary
irreducible representations of the (2+ 1)-Poincaŕe group is presented. A detailed description of
the angular momentum and spin in 2+1 dimensions is given. On this base the relativistic wave
equations for all spins (including fractional) are constructed.

1. Introduction

At the present time a great deal of attention is being devoted to field theoretical models in
(2+ 1)-dimensional spacetime [1]. There is a possibility that particles exist with fractional
spin and exotic statistics in this space. These particles, which are called anyons, may have
a relation to the physics of planar phenomena, for example, to the fractional quantum Hall
effect [2].

The corresponding Poincaré group, which will be denoted asM(2, 1), was studied in [3]
and from the the field theoretical point of view in [4]. The importance of the investigation
of the M(2, 1) group is also stressed by the fact that, being a subgroup of the Poincare
group in 3+ 1 dimensionsM(3, 1), it retains many of the properties of the latter. In this
connection, some of the results, which can be derived for theM(2, 1) group, may also be
valid for theM(3, 1) group. It should be remarked that in contrast toM(1, 1), discussed in
detail in [5],M(2, 1) has a non-Abelian and non-compact subgroup of rotations, similar to
M(3, 1), that leads to a non-trivial structure of the spinning space.

The aim of the present work is to construct a detailed theory of theM(2, 1) group
representations in a form which may be convenient for physical applications. Namely, we
try to emphasize the problem of the spin description and the construction of relativistic
wave equations.

In the seminal paper [6] Wigner gave a classification of all unitary irreductible
representations of the 3+ 1 Poincaŕe group, together with a prescription for their explicit
constraction. In original papers [7] using the Wigner prescription, the unitary irreductible
representations ofM(3, 1) were explicitly determined and a synthesis of covariant partical
equations connected with this representation was carried out. This approach to the
representation theory ofM(3, 1) has been discussed in detail in numerous papers and books
[8–12]. On the other hand, there is in fact only one work [3] where the representation
theory ofM(2, 1) has been studied directly. Thus, we hope that the present paper can add
some important details to the latter theory.
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When classifying the representations of semi-direct products, one usually uses the
method of the little group [6]. That method was also applied toM(2, 1) in [3]. However,
for our purposes of the detailed and explicit construction of representations it is more
convenient to use both the little group method and the method of harmonic analysis and,
in particular, the generalized regular representation (GRR). It is known that any irreducible
representation (IR) of a Lie group is equivalent to a sub-representation of the left (right)
GRR [13–15]. The harmonic analysis allows the most complete description to be given
of representations of a group Lie, using explicit realizations in spaces of functions on the
group. The ideas of the method are presented for example in [11], where one can also
find its application to the motion group of the planeM(2). The harmonic analysis for the
M(3, 1) group can be found in [18, 19]. The harmonic analysis is also very useful in the
study of special functions properties (see [15, 16] and the Wigner lectures, produced by
Talman [17]).

In the present work we use the quasi-regular and generalized regular representations to
explicitly construct all unitary IRs ofM(2, 1) and to analyse on this basis the relativistic
wave equations for higher spins (including fractional) and the corresponding coherent
states. Studying the quasi-regular representation ofM(2, 1), we introduce the scalar
fields and construct the relativistic theory of 2+ 1 angular orbital momentum. Presenting
(2+ 1)-dimensional vectors by means of 2× 2 matrices, we introduce a parametrization
of the M(2, 1) group, where the rotations are given by two complex numbersz1 and
z2, |z1|2 − |z2|2 = 1, which are analogues of Cayley–Klein parameters of the compact
case. The representation space of the left GRR consists of scalar functionsf (x, z), whereas
the spinning operators can be presented as first-order differential operators in the variables
z. It is convenient to classify representations not only with respect to the Casimir operators
p̂2 = pµp

µ and Ŵ = p̂µĴ
µ, but also with respect to the operator of the square of the

spin, which commutes with all generators of the left GRR. The latter operator marks
representations of the 2+ 1 Lorentz group.

In the framework of such an approach one can naturally construct relativistic wave
equations for particles with arbitrary spin. The fixation of the value of the square of the
spin S(S + 1) defines the structure of thez-dependence of the functionsf (x, z), namely,
they appear to be (quasi-)polynomials of the power 2S on z. The coefficients of these
polynomials are interpreted as components of finite(infinite)-dimensional wavefunctions of
relativistic particles with higher spins. The fixation of the values of the Casimir operators
provides equations for these components.

In such a way, for example, both 2+1 Dirac equation (equation for spin 1) and equations
for particles with fractional spins, which are related to the discrete series of the Lorentz
group (see [4, 20, 21]) appear. Thus, using GRR one achieves a unique approach with
which to describe particles with different spins and also provides a possibility to establish
a relation between different descriptions of these spins, for example, in terms of scalar
functionsf (x, z) or in terms of multicomponent columnsψ(x).

A detailed description of angular momentum and spin in 2+ 1 dimensions is given on
the base of the representation theory ofSU(1, 1), which is summarized in the appendix.
In particular, multivalued unitary IRs ofSO(2, 1) ∼ SU(1, 1) and corresponding coherent
states (CS) are considered. It is interesting to discover that the 2+ 1 Dirac equation also
appears in the latter case as an equation for CS evolution.

The SO(2, 1) group appears not only in particle physics but has many other physical
applications. For example in the classical theory of light propagation [22] and especially in
quantum optics where this group is useful for the description of the coherent and squeezed
states of light [23]. The coherent and squeezed states are canonically transformed states of
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the groundstate harmonic oscillator. A subset of these transformations form a group Sp(2)
which is locally isomorphic to the(2+ 1)-dimension Lorentz group.

2. Parametrization

M(2, 1) is a six-parametric group of motions of(2+1)-dimensional pseudo-Euclidean space,
it preserves the intervalηµν1xµ1xν , wherex = (xµ), µ = 0, 1, 2, are coordinates, and
ηµν = diag(1,−1,−1) is the Minkowski tensor. The transformation of the vectorx under
the action of the group (vector representation) is given by the formula

x ′ = gx g ∈ M(2, 1) x ′ν = 3ν
µx

µ + aν (2.1)

where3 is a 3×3 rotation matrix of the 2+1 Lorentz groupO(2, 1). The transformations
can also be presented in the four-dimensional form,

x ′0

x ′1

x ′2

1

 =


a0

3(α) a1

a2

0 0 0 1



x0

x1

x2

1

 (2.2)

with the composition low(a2,32)(a1,31) = (a2 + 32a1,3231). The latter means that
M(2, 1) is the semi-direct product of the 2+1 translation groupT (3) and the Lorentz group
O(2, 1),

M(2, 1) = T (3)×)O(2, 1).

As is known the groupO(2, 1) contains four disjoint setsO↑+ (det3 = +1, 30
0 > 0),

O
↓
+ (det3 = +1, 30

0 < 0), O↑− (det3 = −1, 30
0 > 0), O↓− (det3 = −1, 30

0 < 0),
where onlyO↑+ = SO0(2, 1) is connected to the identity continuously. The two setsO

↑↓
+

are equivalent to the groupSO(2, 1). The corresponding continuously connected part of
M(2, 1) is T (3)×)SO0(2, 1).

Consider first the groupSO0(2, 1). One-parametrical subgroups ofSO0(2, 1), which
correspond to the rotations around axesx0, x1, x2, are given by the matrices

3x0 =
( 1 0 0

0 cosα0 −sinα0

0 sinα0 cosα0

)
3x1 =

( coshα1 0 sinhα1

0 1 0
sinhα1 0 coshα1

)

3x2 =
( coshα2 −sinhα2 0
−sinhα2 coshα2 0

0 0 1

)
. (2.3)

The general transformation can be written in the form3xµ = exp(−iαµJµ), where the
generatorsJµ = i(d/dαµ)(3xµ)|α=0 are

J 0 =
( 0 0 0

0 0 −i
0 i 0

)
J 1 =

( 0 0 i
0 0 0
i 0 0

)
J 2 =

( 0 −i 0
−i 0 0
0 0 0

)
. (2.4)

They obey the commutation relations

[Jµ, J ν ] = −iεµνηJη

whereεµνη is the totally antisymmetric Levi-Civita symbol,ε012= 1.
It is also possible to write the finite transformations by means ofSL(2, R) matrices [3]

or SU(1, 1) matrices. We will consider the latter possibility in detail, taking into account
that SO0(2, 1) is equivalent toSU(1, 1)/Z2, Z2 = {I,−I }, whereZ2 is a multiplicative
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group consisting of two elements,I is the unit matrix. Thus, we are going to study the
group M̃(2, 1) = T (3)×)SU(1, 1). The classification and construction of representations
of M̃(2, 1) allow representations of the groupM(2, 1) to be described.

There is a one-to-one correspondence between the 2+ 1 Lorentz vectorsxµ and 2× 2
matricesX. Let σ 0 be the unit 2× 2 matrix andσ 1, σ 2 the two first Pauli matrices. Then

X = xµσµ =
(

x0 x1− ix2

x1+ ix2 x0

)
detX = X2 = xµxµ xµ = 1

2Tr(Xσµ).

(2.5)

The transformation (2.1) can be written in terms of the matrix representation in the form

X′ = UXU † + A (2.6)

where the matricesX′, X,A correspond to the vectorsx ′µ, xµ, aµ, and theSU(1, 1) matrix
U ,

U =
(
u1 u2

u2 u1

)
U † =

(
u1 u2

u2 u1

)
|u1|2− |u2|2 = 1 u1 = cosh(θ/2) ei(−φ−ω)/2 u2 = − sinh(θ/2) ei(−φ+ω)/2

06 θ <∞ −2π 6 φ < 2π 06 ω < 2π (2.7)

provides the Lorentz rotations. Its relation with the matrix3 from SO0(2, 1) is given by
the formula

3 =
(
u1ū1+ u2ū2 2 Re(u1ū2) 2 Im(u1ū2)

2 Re(u1u2) Re(u2
1+ u2

2) Im(u2
1− u2

2)

−2 Im(u1u2) −Im(u2
1+ u2

2) Re(u2
1− u2

2)

)
.

One can remark thatU and−U correspond to one and the same3, so that to parametrize
the rotations it is enough to useφ ∈ [0, 2π ].

In the representation (2.6)u1 and u2 are analogues of Cayley–Klein parameters,
and φ, θ , ω are those of the Euler angles,U = U(φ, θ, ω). It is possible to
see that the matricesU(φ, 0, 0) and U(0, 0, ω) correspond to the rotations around the
axis x0, U(0, θ,0) correspond to the rotations around the axisx2 and U(φ, θ, ω) =
U(φ, 0, 0)U(0, θ,0)U(0, 0, ω), i.e. the general transformation can be presented as theω-
rotation around the axisx0, then theθ -rotation around the axisx2, and again theφ-rotation
around the axisx0.

The following sets of the parameters(φ, θ, ω): (α0, 0, 0), (−π/2, α2, π/2), (0, α1, 0),
correspond to the one parametrical subgroups3x0(α0), 3x1(α1), 3x2(α2) respectively.
The matrix 3 in the Euler angles parametrization can be presented as3(φ, θ, ω) =
3x0(φ)3x2(θ)3x0(ω).

We are also going to use the latter parametrization of elementsg of M̃(2, 1) by means
of matricesA andSU(1, 1) matricesU, g = (A,U). In this representation the composition
low and inverse elements have the form

g = (A,U) = (A2, U2)(A1, U1) = (U2A1U
†
2 + A2, U2U1)

g−1 = (−U−1A(U−1)†, U−1). (2.8)
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3. Quasi-regular representation and theory of orbital momentum

3.1. Quasi-regular representation and scalar field

Let us consider a quasi-regular representationT (g), which is acts on the coset space
M(2, 1)/O(2, 1) = M̃(2, 1)/SU(1, 1), i.e. in the space of functionsf (x),

f ′(x) = T (g)f (x) = f (g−1x). (3.1)

The representation (3.1) corresponds to a scalar field transformation low,f ′(gx) = f ′(x ′) =
f (x). The explicit form ofg−1x is given by the formulae

(g−1x)ν = (3−1)νµ(x
µ − aµ) g−1x = U−1(X − A)(U−1)† (3.2)

in the parametrizations (2.1) and (2.6), respectively. The Lie algebra ofM(2, 1) contains
six generatorsp̂µ and L̂µ, which correspond to the parametersaµ and−αµ. They have a
form

p̂µ = i∂/∂xµ L̂η = εηµνx̂µp̂ν = iεηµνxµ∂/∂x
ν (3.3)

in the representation in question, and obey the commutation relations

[p̂µ, p̂ν ] = 0 [p̂µ, L̂ν ] = −iεµνηp̂η [L̂µ, L̂ν ] = −iεµνηL̂η. (3.4)

Finite transformations in the parametrizations (2.4) and (2.7) can be written as

T (g)f (x) = e−iφL̂0
e−iθL̂2

e−iωL̂0
eiap̂f (x). (3.5)

The eigenvaluem2 of the Casimir operator† p̂2 can, in particular, characterize the IR,
p̂2fm(x) = m2fm(x). For unitary representations, where the generatorsp̂µ and L̂µ are
Hermitian,m2 is real. It follows from the commutation relations (3.4) thatp̂L̂ is also a
Casimir operator, which is, however, zero in the representation under consideration.

To find all IRs, which are contained in the representation (3.1), we consider the space
of functions which are dependent on momenta, doing the Fourier transformation,

ϕ(p) = (2π)−3/2
∫
f (x) eipx dx. (3.6)

In this space the expressions for the generators have the form

p̂µ = pµ L̂η = εηµνx̂µpν = iεηµνpµ∂/∂p
ν. (3.7)

The form ofL̂µ in the space of functionsϕ(p) coincides with that in the space of functions
f (x) if one replacespµ→ xµ, and, therefore, the rotations result in:ϕ(p)→ ϕ(p′), where
p′µ = (3−1)νµpν . In the parametrization (2.6),

P ′ = U−1P(U−1)† P = p0I + p1σ 2+ p2σ 2. (3.8)

Translations affect only the phase of the functions, so we get an analogue of equation (3.1),

T (g)ϕ(p) = eiap′ϕ(p′). (3.9)

IRs are related to orbits in the space of functionsϕ(p) and are marked by the values
p2 = (p′)2 = m2. We denote byTm(g) representations with a givenm. We will consider
three possible cases.

(1)m 6= 0 and is real. In this case the representationsTm(g) act in the space of functions
on a two-sheeted hyperboloid,

p0 = ±m coshθ p1 = ∓m sinhθ cosφ p2 = ∓m sinhθ sinφ. (3.10)

† Here and in what followŝp2 = p̂µp̂µ and so on.
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At m > 0 it is decomposed in two IRs, oneT +m (g), which corresponds to particles (upper
sheet,p0 > 0), and another oneT −m (g), which corresponds to antiparticles (lower sheet,
p0 < 0). One can consider only IR withm > 0 because ofT +m (g) andT −−m(g) are equivalent.
The scalar product at a fixedm is given by the equation

〈f1|f2〉 =
∫ 2π

0
dφ

∫ +∞
0

ϕ1(θ, φ)ϕ2(θ, φ) sinhθ dθ (3.11)

and the generatorsLµ have the form

L̂0 = −i∂φ L̂1 = −i(cothθ cosφ∂φ + sinφ∂θ )

L̂2 = i(−cothθ sinφ∂φ + cosφ∂θ ). (3.12)

(2) m = 0. In this case the representationsTm(g) act in the space of functions on the
cone,

p0 = p p1 = −p cosφ p2 = −p sinφ. (3.13)

The representationT0(g) is split into three IRs: one-dimensionalT 0
0 (g), which corresponds

to the invariantp = 0 (vertex of the cone), andT +0 (g) andT −0 (g), which act on the upper
and lower sheets of the cone. The scalar product is given by the formula

〈f1|f2〉 =
∫ 2π

0
dφ

∫ +∞
0

ϕ1(p, φ)ϕ2(p, φ)dp (3.14)

and the generatorsLµ have the form

L̂0 = −i∂φ L̂1 = i(cosφ∂φ + p sinφ∂p) L̂2 = i(−sinφ∂φ + p cosφ∂p). (3.15)

(3) m is imaginary, which corresponds to tachyons. The representationsTm(g) act in
the space of functions on a one-sheeted hyperboloid,

p0 = im sinhθ p1 = −im coshθ cosφ p2 = −im coshθ sinφ. (3.16)

The scalar product is given by the formula

〈f1|f2〉 =
∫ 2π

0
dφ

∫ +∞
0

ϕ1(θ, φ)ϕ2(θ, φ) coshθ dθ (3.17)

and the generatorsLµ have the form

L̂0 = −i∂φ L̂1 = −i(tanhθ cosφ∂φ + sinφ∂θ )

L̂2 = i(−tanhθ sinφ∂φ + cosφ∂θ ). (3.18)

3.2. Angular momentum

We have considered three types of scalar representations ofM̃(2, 1), which correspond to
a real mass, zero mass and imaginary mass. In each case the functional representation
spaces are different, these are functions on one- or two-sheeted hyperboloids and on the
cone. Respectively, the expressions for the angular momentum operatorsL̂µ are different.
Here we are going to analyse the eigenvalue problem for the square of this operator and
its projection in all the cases, using thep-representation (3.6) and the consideration given
in the appendix. In particular, we will use bases of unitary IRsSO(2, 1) to decompose
functions on one- and two-sheeted hyperboloids and on the cone.
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(1) m 6= 0 and is real. The operatorŝLµ act in the space of functions on two-sheeted
hyperboloids with the scalar product (3.11). The rising and lowering operatorsL̂± and the
operator of the square of the angular momentumL̂2 have the form

L̂± = e±ilφ(±i cothθ∂/∂φ + ∂/∂θ) L̂2 = ∂2

∂θ2
+ cothθ

∂

∂θ
+ 1

sinh2 θ

∂2

∂φ2
. (3.19)

Let us suppose that a representation of theSO(2, 1) subgroup has the highest weight
f (θ, j)eijφ . Then

L̂+fj (θ) eijφ = ei(j+1)φ(−j cothθfj (θ)+ ∂fj (θ)/∂θ) = 0 (3.20)

and therefore, the highest weight has the form(sinhθ)j eijφ . It is easy to remark that at
j < −1/2 (that would correspond to a discrete series) the norm of the state has a power
divergence as a result of a singularity atθ = 0, and atj > −1/2 the integrand of the norm
grows exponentially with the growth ofθ (the case of double-valued IRs withj = −1/2
is considered below). That means that single-valued unitary IRs with a highest (lowest)
weight are absent in the decomposition ofT ±m .

In the general case the wavefunction (3.5) in thep-representation, which are
eigenvectors of the operatorŝL2, L̂0,

L̂2|j l〉 = j (j + 1)|j l〉 L̂0|j l〉 = l|j l〉 (3.21)

can be written in the formNP lj (coshθ) eilφ , whereP lj (coshθ) is adjoint Legendre function

and N does not depend onθ and φ. We are going to use the functions̃P lj (coshθ) =
(0(j + 1)/0(j + l + 1))P lj (coshθ)). The representation is unitary and single-valued at

j = −1/2+ iλ/2 and integerl (see [15]). Thus, IRsT ±m of M̃(2, 1) are decomposed in the
course of the reduction into the representations of the principal series,

|λl〉 = P̃ lj (coshθ) eilφ/
√

2π j = −1/2+ iλ/2 (3.22)

〈λl | λ′l′〉 = (1/2π2)λ tanh(πλ/2)δ(λ− λ′)δll′
+∞∑
l=−∞

|λl〉〈λ′l| = δλλ′/2π. (3.23)

The representations of the principal seriesTλ,ε with arbitrary non-zeroε can be
constructed in terms of multivalued functions on a sheet of the hyperboloid (ε = 0
corresponds to the single-valued representations). The eigenfunctions ofL̂2 and L̂0 are
the same adjoint Legendre functions (3.22) withl = n + ε, n integer, and with scalar
product (3.23), where the factor tanh(πλ/2) has to be replaced by one tanh(π(λ/2+ iε))
[15]. At ε = 1/2 (double-valued representations) andj = −1/2, the representation is
reducible and is split into two representations with the highest weightl = −1/2 and with
the lowest weightl = 1/2, the corresponding functions have the form(sinhθ)−1/2 e∓iφ/2,
according to (3.20).

(2) m = 0. The operatorŝLµ (3.15), and

L̂± = e±ilφ(p∂/∂p ± ∂/∂φ) L̂2 = p∂/∂p(p∂/∂p + 1) (3.24)

act in the space of functions on the conep2 = 0. One can remark that the expression (3.24)
for L̂± passes into the expression (A20) on the complex cone (A9) after the replacement of
p by ρ2. The scalar products on these manifolds differ only by the limits of integration over
the angleφ ([−2π, 2π ] or [0, 2π ]). Thus, the representations of the principal seriesTλ,ε
can be constructed in the space of functions on the cone, however, only the representations
with ε = 0 are single-valued and the representation withε = 1/2 are double-valued.
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According to (A21) the wavefunction of a massless particle with the fixedj =
−1/2+ iλ/2 and with the projectionl has the form in the momentum representation

|λl〉 = p−1/2+iλ/2 eilφ/2π 〈λl | λ′l′〉 = δ((λ− λ′)/2)δll′ . (3.25)

(3) m 6= 0 and is imaginary. The operatorsL̂µ (3.18) and

L̂± = e±iφ(±i tanhθ∂/∂φ + ∂/∂θ) L̂2 = ∂2

∂θ2
+ tanhθ

∂

∂θ
− 1

cosh2 θ

∂2

∂φ2
(3.26)

act in the space of functions on one-sheeted hyperboloids. Unitary IRs of the discrete series
can be realized in such a space. The result of the action of the arising operatorL̂+ on the
highest weightsfj (θ) eijφ of the discrete negative series IRs must be zero,

L̂+fj (θ) eijφ = ei(j+1)φ(−j tanhθfj (θ)+ ∂fj (θ)/∂θ) = 0

thus,fj (θ) = (coshθ)j . By analogy, we get the expression(coshθ)j e−ijφ for the lowest
weight of the discrete positive series. Normalizing these functions by means of the scalar
product (3.17) and denoting them asYjj (θ, φ) andYj−j (θ, φ), we can write

Yj±j (θ, φ) =
(
(−2j − 2)!!

π2(−2j − 3)!!

)1/2

(coshθ)j e±ijφ. (3.27)

The functionsYj l(θ, φ), l < j (IR T −j ) can be derived by the action of the lowering operator

L̂− on the highest weightYj−j (θ, φ), and the functionsYj l(θ, φ), l > −j (IR T +j ) can be

derived by the action of the arising operatorL̂+ on the lowest weightYj j (θ, φ). By analogy
with the spherical functions we will call (3.27) the functions of the one-sheeted hyperboloid.
The wavefunctions of tachyons in 2+ 1 dimensions have the form,

|j l〉 = Yj l(θ, φ) 〈λl | λ′l′〉 = δλλ′δll′ (3.28)

wherej 6 −1 and is integer (for the multivalued IRj < −1/2, and non-integer), whereas
the momentum projectionl > |j |. The functions (3.28), similar to the ordinary spherical
functions, differ from the adjoint Legendre functionsP jl by a factor only.

In the general case one has to consider eigenfunctions of the operatorsL̂2 andL̂0 with
the eigenvaluesj (j +1) andl. These functions have the formf (θ) eilφ , wheref (θ) obeys
the equation (

∂2

∂θ2
+ tanhθ

∂

∂θ
+ 1

cosh2 θ
l2
)
f (θ) = j (j + 1)f (θ) (3.29)

which coincides with one for the adjoint Legendre functions,(
(1− z2)

∂2

∂z2
− 2z

∂

∂z
− l2

(1− z2)

)
P lj (z) = −j (j + 1)P lj (z)

at z = i sinhθ . At j 6 −1 we get the above considered IR of the discrete series. The
functionsP lj (i sinhθ) at j = −1/2+ iλ/2 could correspond to the principal series of the
unitary IRs, but the corresponding norm is divergent in this case.

Thus, our consideration shows: in the course of the reduction on the subgroupSO(2, 1)
that the representationsT ±m (g) and T ±0 (g) of M̃(2, 1) with real (in particular zero) mass
are split into IRs of the principal series,j = −1/2 + iλ, L̂2 6 −1/4, whereasl are
arbitrary integer. For tachyons, the representationsTm(g) are split into IR of the discrete
series,j 6 −1 and integer,L̂2 = j (j + 1) > 0 (i.e. the space component of the angular
momentumL0 is greater than the bust ones). For the tachyons the absolute value of the
projectionl cannot be less than|j |, in particular,l cannot be zero.
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Below we present three sets of wavefunctions of scalar particles, which are
eigenfunctions for the commuting operators,{p̂µ}, {p̂2, p̂0, L̂

0} and {p̂2, L̂2, L̂0}
respectively.

(1) States with a given momentum,f (x) = e−ipx .
(2) States with a given energyp0 and angular momentum projectionl (in x-

representation),

f (x) = eip0x
0+ilφJl(ρ

√
p2

0 −m2) (3.30)

whereρ, φ are the polar coordinates in thex1, x2 plane, andJl are Bessel functions.
(3) States (3.21) in thep-representation with a given orbital momentumj and its

projectionl. According to (3.22), (3.25) and (3.28), we have three cases:

m > 0 |λl〉 = P̃ lj (coshθ) eilφ j = −1/2+ iλ/2 (3.31)

whereθ andφ are coordinates on two sheet hyperboloidsp2 = m2 > 0, andP̃ lj are adjoint
Legendre functions;

m = 0 |λl〉 = p−1/2+iλ/2 eilφ (3.32)

whereθ andφ are coordinates on the light conep2 = 0;

m—imaginary |j l〉 = Yjl(θ, φ) (3.33)

whereθ andφ are coordinates on one sheet hyperboloidsp2 = m2 < 0, andYjl(θ, φ) are
one sheet hyperboloid functions (3.28).

4. Generalized regular representation and 2+ 1 spin

In the previous section we considered the quasi-regular representation, which produces a
description of scalar fields or spinless particles. To get a complete picture of all possible
representations one has to turn to the so-called generalized regular representation (GRR)
[13–15]. The GRR acts in the space of functionsf (g) on the group. The left GRRTL(g)
and the right GRRTR(g) are defined as

TL(g)f (g0) = f (g−1g0) (4.1)

TR(g)f (g0) = f (g0g). (4.2)

It is known that any IR of a group is equivalent to that of a sub-representation of the left
(right) GRR [13]. Taking this into account, we can construct a GRR ofM̃(2, 1) in the
parametrization (2.5)–(2.7), whereg0↔ (x, z)↔ (X,Z), g ↔ (x, z)↔ (A,U),

X =
(

x0 x1− ix2

x1+ ix2 x0

)
Z =

(
z1 z2

z̄2 z̄1

)
A =

(
a0 a1− ia2

a1+ ia2 a0

)
U =

(
u1 u2

ū2 ū1

)
. (4.3)

Using the composition law (2.8), one can get

TL(g)f (x, z) = f (g−1x, g−1z) g−1x ↔ U−1(X − A)(U−1)† g−1z ↔ U−1Z

(4.4)

TR(g)f (x, z) = f (xg, zg) xg ↔ X + ZAZ† zg ↔ ZU. (4.5)

According to (4.4),X is transformed with respect to the adjoint (vector) representation and
Z with respect to the spinor representation ofSU(1, 1). One can also see thatZ is invariant
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under translations. If one is restricted toZ-independent functions (i.e. by the functions on
the coset spacẽM(2, 1)/SU(1, 1)), then (4.4) reduces to the quasi-regular representation
(3.1), which corresponds to the scalar field case. If one restricts itself toX-independent
functions, then (4.4) and (4.5) reduce to the left and the right GRR ofSU(1, 1).

Calculating generators, which correspond to the parametersaµ and−αµ, in the left
GRR (4.4), we get

p̂µ = i∂/∂xµ Ĵ µ = L̂µ + Ŝµ (4.6)

whereL̂µ are the angular momentum operators (3.3), andŜµ are spin operators,

Ŝ0 = −1

2
V σ 3∂V + 1

2
V̄ σ 3∂V̄ Ŝ1 = i

2
V σ 2∂V − i

2
V̄ σ 2∂V̄

Ŝ2 = i

2
V σ 1∂V + i

2
V̄ σ 1∂V̄ [Ŝµ, Ŝν ] = −iεµνηŜη [Ŝµ, p̂ν ] = 0 (4.7)

andV = (z1z̄2), V̄ = (z̄1z2). The algebra of the generators (4.6) has the form

[p̂µ, p̂ν ] = 0 [p̂µ, Ĵ ν ] = −iεµνηp̂η [Ĵ µ, Ĵ ν ] = −iεµνηĴη. (4.8)

We denote the generators of the right GRR by the same letters but they are underlined.
The generatorŝJ

µ
do not depend onx and are only expressed in terms ofz,

p̂
µ
= −(3−1)νµp̂ν (or P̂ = −Z−1P̂ (Z−1)†) Ĵ

µ = Ŝµ (4.9)

Ŝ
0 = 1

2
χσ 3∂χ − 1

2
χ̄σ 3∂χ̄ Ŝ

1 = i

2
χσ 2∂χ − i

2
χ̄σ 2∂χ̄

Ŝ
2 = − i

2
χσ 1∂χ − i

2
χ̄σ 1∂χ̄ (4.10)

whereχ = (z1z2), χ̄ = (z̄1z̄2). All the right generators commute with all the left generators
and obey the same commutation relations (4.8). The operatorp̂2 = p̂2 and Pauli–Lubanski

scalarŴ = p̂Ĵ = p̂Ĵ are the Casimir operators. Thus, IRs ofM̃(2, 1) can be marked by
their eigenvalues.

It follows from (3.3) thatp̂L̂ = 0, so that alwaysŴ = p̂Ŝ. The operatorŴ commutes
with the total angular momentum operatorŝJµ = L̂µ + Ŝµ, but not with the orbital
momentum operatorŝLµ and spin operatorŝSµ separately. The operator of spin square

Ŝ2 = Ĵ
2

commutes with all the generators of the left GRR. That means that objects,
which are transformed under the left GRR or under its sub-representations, can also be
marked by eigenvalues of this operator. However, that operator does not commute with the

generatorsp̂
µ

of the right GRR, [̂pµ, Ĵ
2
] = iεµνη(p̂

ν
Ĵ η + Ĵ ηp̂ν), similar to the left GRR

case, [̂pµ, Ĵ2] = iεµνη(p̂ν Ĵη + Ĵηp̂ν). Thus, the square of spin is not a conserved quantity
in all the right representations, butĴ2 is.

Making the Fourier transformation (3.6) in the variablesx, i.e. considering
representations in the space of functionsϕ(p, z), one can get an analogue of the formulae
(4.4) and (4.5) in this representation,

TL(g)ϕ(p, z) = eiap′ϕ(p′, g−1z) p′ = g−1p↔ P ′ = U−1P(U−1)† (4.11)

TR(g)ϕ(p, z) = e−ia′pϕ(p, zg) a′ ↔ A′ = ZAZ† (4.12)

whereP is defined by (3.8). It can be seen that the combination of|z1|2 − |z2|2 andp2 is
conserved under the transformations (4.11) and (4.12). The former is always equal to one
and the latter tom2, and depends on the representation.Z andP are defined by six real
parameters. Three of them (namely,P = −Z−1P(Z−1)† for the left GRR orP for the
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right GRR) are fixed and only three of them vary under the group transformations (for the
left GRR two of them set the direction of the momentum).

The classification of the orbits with respect to the eigenvalues of the operatorp̂2 is
completely similar to that in section 3 for the spinless case. These are orbitsO±m for real
m 6= 0, O±0 andO0

0 for m = 0, and finallyOm for imaginarym. However, to describe the
IR only one parameterm is not enough, one needs to know the characteristics connected
with the spin.

We note that the left and the right GRR are equivalent,ĈTR(g) = TL(g)Ĉ, where
Ĉf (g0) = f (g−1

0 ). Because of that, and also since the left representations are more adequate
to describe physical fields, we are going to consider in more detail only the left GRR of
M̃(2, 1).

Consider the left GRR, which acts in the space of functionsf (x, z), f ′(x, z) =
TL(g)f (x, z) = f (g−1x, g−1z). It is easy to remark that

f ′(x ′, z′) = f (x, z) (4.13)

where

x ′ = gx = 3x + a ↔ U(X + A)U † z′ = gz ↔ UZ. (4.14)

Thus one can reduce the problem of the classification of left representations to that of the
scalar functions (4.13)–(4.14), using the general scheme of the harmonic analysis [11, 13].

To classify the functionsf (x, z) we are going to use besides the Casimir operatorsp̂2,
Ŵ , the operator of the spin squareŜ2, which commutes with all the generators of the left
GRR. By means of this operator it is convenient to select IRs from the set of equivalent
ones, and, moreover, to classify IRs in the special case of zero eigenvalues of the Casimir
operators, where the functions (4.13) do not depend onx. In the latter case IRs of the
Poincare group coincide, in fact, with those of the Lorentz group.

Let us consider in this connection the discrete basisRSζ (z) of the Lorentz group
representationTS(g),

Ŝ2RSζ (z) = S(S + 1)RSζ (z) Ŝ0RSζ (z) = ζRSζ (z)
R
′
S(z) = TS(g)RS(z) = RS(g−1z) (4.15)

whereRS(z) is a column with the componentsRSζ (z). The numberS marks the IR of the
Lorentz group and further we will callS the Lorentz spin. The possible values ofS and the
corresponding spectrum ofζ depends on the type of the Lorentz group representation, see
the appendix and table A1. The eigenvectorsf (x, z) of the operatorŜ2 can be presented
in the form

f (x, z) =
∑
ζ

ψζ (x)RSζ (z) = ψ(x)RS(z) (4.16)

whereψ(x) is a line with componentsψζ (x). On the other hand one can introduce a
basisRSζ (z) of the contragradient [11] to theTS(g) representation. In terms of this basis a
function f (x, z) can be presented by the decomposition

f (x, z) =
∑
ζ

ψζ (x)RSζ (z) = ψ(x)RS(z) R′S(z) = R′S(z)TS(g−1) (4.17)

where RS(z) is a line with the componentsRSζ (z) and ψζ (x) is a column with the
componentsψζ (x). In the case when the representationTS(g) and its contragradient are
equivalent, which is the value for example for finite-dimensional IRs of the Lorentz group,
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one and the same function has both representations (4.16) and (4.17). Using (4.16) and
(4.17), one can find

ψ
′
(x ′) = ψ(x)TS(g) ψ ′(x ′) = TS(g−1)ψ(x).

The productψ(x)ψ(x) is Poincaŕe invariant.
Thus the eigenvectors of̂S2 can be described by the columnsψ(x) (linesψ(x)) with

the componentsψζ (x) (ψζ (x)). Their dimensionality depends on the representation of the
Lorentz group. Further we will callψ(x) the wavefunction inS-representation or simply
the wavefunction. In such a form all the spinning operators can be realized as discrete
matrices. Their explicit form can be easily found.

As is demonstrated in the appendix any IR of the Lorentz group can be constructed on
the elements of the first column of the matrixZ (4.4). Thus one can be restricted by the
functionsf (x, z), with z = {z1, z̄2} only. In this case eigenvectors of the operatorŜ2 are
homogeneous functions in the variablesz1 and z̄2 of the power 2S, and the discrete basis
can be chosen in the form

RSζ (z) = NSζ zS−ζ1 z̄
S+ζ
2 . (4.18)

The Lorentz IR with 2S integer and positive are non-unitary and finite-dimensional, whereas
unitary infinite-dimensional IRs correspond toS < 0 (discrete and supplementary series)
andS = −1/2+ iλ/2 (principal series).

Let 2S be integer and positive. (The caseS = 0 corresponds to the scalar functions
(3.1), which do not depend onz.) First considerS = 1/2. In this case the decomposition
(4.17) can be written in the form

f (x, z) = ψ−1/2(x)z1+ ψ1/2(x)z̄2 Ŝ2f = 3
4f. (4.19)

Applying the transformation (4.4) to this function

f ′(x, z) = (ψ ′−1/2(x)ψ
′
1/2(x))

(
z1

z̄2

)
= (ψ−1/2(g

−1x)ψ1/2(g
−1x))U−1

(
z1

z̄2

)
we conclude that the lineψ(x) = (ψ−1/2(x)ψ1/2(x)) is transformed under the spinor
representation of the Lorentz group,

ψ
′
(x ′) = ψ(x)U−1.

Taking into account the relationU−1 = σ 3U †σ 3, which is valued for theSU(1, 1) matrices,

we get the transformation low for the columnsψ(x) = (ψ1/2(x)ψ−1/2(x))
T = σ 3ψ

†
,

ψ ′(x ′) = Uψ(x).
One can find that the same spinorψ appears from the decomposition

f (x, z) = ψ1/2(x)z̄2− ψ−1/2(x)z1 = (z̄2−z1)

(
ψ1/2(x)

ψ−1/2(x)

)
Ŝ2f = 3

4
f. (4.20)

Thus, in the case under consideration, we have two equivalent descriptions. One in
terms of functions (4.13)) and another in terms of linesψ(x) or columnsψ(x). One can
find the action of the operatorŝSµ in the latter representation,

Ŝµψ(x) = 1
2γ

µψ(x)

where

γ µ = (σ 3, iσ 2,−iσ 1) [γ µ, γ ν ]+ = 2ηµν [γ µ, γ ν ] = −2iεµνλγλ (4.21)
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are 2×2 γ -matrices in 2+1 dimensions†. The functionsψ = (ψ1/20)T andψ = (0ψ−1/2)
T

are eigenvectors for the operatorŜ0 with the eigenvalues(±1/2).
The productψ(x)ψ(x) = ψ

′
(x ′)ψ ′(x ′) is the scalar density, which is not positive

defined.
The polynomials of the power 2S can be written in the form

f (x, z) =
2S∑
n=0

ψn−S(x)(C
n
2S)

1/2z1
2S−nz̄n2 = ψ(x)RS(z) (4.22)

whereψ(x) is a(2S+1)-component line,RS(z) is a column with elements(Cn2S)
1/2z1

2S−nz̄n2,
n = 0, 1, . . . , 2S, which is transformed with respect to the finite-dimensional IRTS(g−1)

of the Lorentz group,R
′
S(z) = TS(g−1)RS(z), or in the form

f (x, z) =
2S∑
n=0

ψS−n(x)(Cn2S)
1/2(−z1)

nz̄2S−n
2 = RS(z)ψ(x) Ŝ2f = S(S + 1)f (4.23)

whereψ(x) is (2S + 1)-component column,ψ(x) = 0ψ †(x), and(0)nn′ = (−1)nδnn′ .
By analogy with the caseS = 1/2 one finds

ψ
′
(x ′) = ψ(x)TS(g) ψ ′(x ′) = TS(g−1)ψ(x). (4.24)

Here the scalar density has the formψ(x)ψ(x) = ψ†(x)0ψ(x). The operatorsŜµ are
(2S + 1)× (2S + 1) spin matricesSµ in the space of columnsψ(x), and are generators of
SU(1, 1) in the representationTS ,

(S0)nn′ = δnn′(S − n) n = 0, 1, . . . ,2S

(S1)nn′ = −1

2

(
δn n′+1

√
(2S − n+ 1)n− δn+1 n′

√
(2S − n)(n+ 1)

)
(S2)nn′ = − i

2

(
δn n′+1

√
(2S − n+ 1)n+ δn+1 n′

√
(2S − n)(n+ 1)

)
. (4.25)

For the infinite-dimensional unitary IR ofSU(1, 1) the values ofS can be non-
integer,S < −1/2 (discrete series),−1/2 < S < 0 (supplementary series), or complex,
S = −1/2+ iλ/2 (principal series), see the appendix. Consider first representations with the
highest or lowest weights. These are all representations of the discrete seriesT ±S and two
representations of the principal seriesTS,ε, which correspond toS = −1/2 andε = 1/2, i.e.
to half-integer spin projections. The eigenfunctions of the operatorŜ2 in the representations
T ±S are negative powerS quasi-polynomials (see (A15)),

f +(x, z) =
∞∑
n=0

ψ+n (x)(C
n
2S)

1/2(−z1)
2S−nz̄n2

f −(x, z) =
∞∑
n=0

ψ−n (x)(C
n
2S)

1/2(−z1)
n z̄2S−n

2

ψ±′(x ′) = T ±S (g−1)ψ±(x) Cn2S =
(
(−1)n0(n− 2S)

n!0(−2S)

)1/2

. (4.26)

The representations of the positive and negative series are conjugated,

(T +S (g))
† = T −S (g) (ψ±′(x ′))† = (ψ±(x))†T ∓S (g).

† The generators (4.6) of the left GRR correspond to the parametersaµ and−αµ. If we take the generators which
correspond to the parametersaµ andαµ then another non-equivalent representation forγ -matrices appears, which
differs from (4.21) by a sign.
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In contrast to the case of the finite-dimensional representations, here the scalar density is
positively defined,

(ψ+(x))†ψ+(x) =
∞∑
n=0

|ψ+−S+n(x)|2 (ψ−(x))†ψ−(x) =
∞∑
n=0

|ψ−S−n(x)|2.

The possible eigenvaluesζ of the operatorŜ0 obey the inequality|ζ | > |S| > 1/2 for the
IR of the discrete series. The spin projectionζ can take on only positive values for the
representationsT +S , ζ = −S + n, and negative values forT −S , ζ = S − n.

For the representationsT +S the spin matricesSµ are

(S0)nn′ = δnn′(−S + n) n = 0, 1, 2, . . .

(S1)nn′ = − i

2

(
δn n′+1

√
(n− 1− 2S)n− δn+1 n′

√
(n− 2S)(n+ 1)

)
(S2)nn′ = 1

2

(
δn n′+1

√
(n− 1− 2S)n+ δn+1 n′

√
(n− 2S)(n+ 1)

)
. (4.27)

For T −S representationsS1 is the same andS0, S2 change sign only.
In the case of unitary representations of the principal series,S = −1/2+ iλ/2, the

functionsf (x, z) are presented by the infinite sum,

f (x, z) =
+∞∑
n=−∞

ψε+n(x) in(−z1)
−1/2−iλ/2−(ε+n)z̄−1/2−iλ/2+(ε+n)

2 Ŝ2f = −1

4
(1+ λ2)f.

(4.28)

The spin projectionζ can take on the valuesε + n, where ε ∈ [−1/2, 1/2], n =
0,±1, . . . . In the space of infinite-dimensional columnsψ with the elementsψε+n(x) the
operatorsŜµ have the form of corresponding infinite-dimensional matricesSµ,

(S0)nn′ = δnn′(ε + n) n = 0,±1,±2, . . .

(S1)nn′ = − i

2
(δn n′+1(−1/2+ ε + n− iλ/2)− δn+1 n′(1/2+ ε + n+ iλ/2))

(S2)nn′ = 1

2
(δnn′+1(−1/2+ ε + n− iλ/2)+ δn+1n′(1/2+ ε + n+ iλ/2)). (4.29)

As a result of the unitarity of the representations under consideration, the corresponding
scalar density

ψ†(x)ψ(x) =
∞∑

n=−∞
|ψε+n(x)|2

is positively defined.
In the case of the unitary infinite-dimensional representations of the principal and

discrete series the matricesS1 and S2 are Hermitian, whereas in the case of the finite-
dimensional non-unitary representations aready considered they are anti-Hermitian. In the
space of columns with elementsψζ the matricesS1 andS2 have non-zero elements only on
the secondary diagonals.

The spin projectionζ can take on non-integer values for some IRs of the principal and
discrete series. These IRs can be used to describe the anions [4].
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5. Relativistic wave equations and IRs ofM̃ (2, 1)

5.1. Relativistic wave equations

As is known, wavefunctions of relativistic particles are identified with vectors of IR spaces
of the corresponding Poincare group. Thus the problem of the construction of the relativistic
wave equations for particles with different spins can be solved by means of a decomposition
of the left GRR of theM̃(2, 1) group.

Consider functionsf (x, z), which are transformed under the left GRR ofM̃(2, 1), and
which are eigenvectors for the Casimir operatorsp̂2, Ŵ = p̂Ŝ, and for the operator̂S2,
which commute with all the generators of the left GRR,

(p̂2−m2)f (x, z) = 0 (5.1)

(p̂µŜ
µ −K)f (x, z) = 0 (5.2)

(Ŝ2− S(S + 1))f (x, z) = 0. (5.3)

The equations (5.1)–(5.3) define some sub-representation of the left GRR ofM(2, 1), which
is characterized by massm, Lorentz spinS, and by the eigenvalueK of Lubanski–Pauli
operator. Possible values ofK can be easily described in the massive case. Here we
can use a rest frame, wherêpµŜµ = Ŝ0m signp0. Thus, for particlesK = sm and for
antiparticlesK = −sm, where the spectrums coincides with one of the operatorsŜ0. The
latter spectrum depends on the representation of the Lorentz group, see the appendix and
the table A1. Atm = 0 we supposeK = 0, that is true for IRs with a finite number of
spinning degrees of freedom. The general casesm = 0 andm imaginary will be discussed
below.

At S fixed and in theS-representation the equations (5.1)–(5.2) have the form

(p̂2−m2)ψ(x) = 0 (5.4)

(p̂µS
µ − sm)ψ(x) = 0 (5.5)

whereψ(x) are columns andSµ are matrices, described in the previous section. They obey
the commutation relations of theSU(1, 1) group,

[Sµ, Sν ] = −iεµνηSη.

Let us describe possible cases, which correspond to finite-dimensional non-unitary IRs, and
to infinite-dimensional unitary IRs of the latter group.

(1) Consider finite-dimensional and non-unitary IRs ofSU(1, 1). In this caseS has to
be positive, integer or half-integer. According to (5.5),

ψ†(x)(iS†µ
←−
∂µ + sm) = 0.

It follows from the explicit expressions forSµ (4.22) thatS†µ = 0Sµ0, where(0)nn′ =
(−1)nδnn′ . The functionψ = ψ†0 obeys the equation

ψ(x)(iSµ
←−
∂µ + sm) = 0. (5.6)

As a consequence of (5.5) and (5.6), the continuity equation holds

∂µj
µ = 0 jµ = ψSµψ. (5.7)

At S = 1/2 the densityj0 = ψS0ψ is positively defined (the scalar densityψψ is not
positively defined, as was mentioned before).
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At S = 1/2 the equation (5.5) can be rewritten in the form of a 2+ 1 Dirac equation,

(p̂µγ
µ −m)ψ(x) = 0 (5.8)

whereγ µ = 2Sµ areγ -matrices in 2+ 1 dimensions (4.21).
Let us consider the statesf (x, z) = e−ipx(Az1 + Bz2) with a definite momentum. The

combination|A|2−|B|2 = C remains constant under thẽM(2, 1) transformations. One can
setA or B to be zero in a certain reference frame, depending on the sign ofC. In the rest
frame we get two wavefunctions, which cannot be connected by anyM̃(2, 1) transformation,
e−ip0x

0
z1 (C > 0), e−ip0x

0
z2 (C < 0). They correspond to two different directions of the

spin projection on the axisx0. Representations of̃M(2, 1) atm > 0 andS = 1/2 are split
into two IR, which correspond to particles with spin projectionss = 1/2 ands = −1/2.

The caseC = 0, f (x, z) = A e−ip0x0
(eiφ1z1+eiφ2z2), A 6= 0, corresponds to the massless

particle. Indeed, a straightforward calculation shows that the action of the operatorp̂Ŝ on
the function(eiφ1z1+eiφ2z2) gives zero atp̂0 = p, p̂1 = p cosϕ, p̂2 = p sinϕ, ϕ = ϕ1−ϕ2

(see also (5.35)). Thus atS = 1/2 we have three cases in accordance with possible values
of the Casimir operator̂pŜ (±m/2, 0).

At S = 1 the decomposition (4.17) has the following form

f (x, z) = ψ1(x)z̄
2
2 − ψ0(x)

√
2z1z̄2+ ψ−1(x)z

2
1 (5.9)

whereψ(x) = (ψ1(x)ψ0(x)ψ−1(x))
T is subjected to the equation (5.5)

(p̂µS
µ − sm)ψ(x) = 0 (5.10)

S0 =
( 1 0 0

0 0 0
0 0 −1

)
S1 = − 1√

2

( 0 −1 0
1 0 −1
0 1 0

)
S2 = − i√

2

( 0 1 0
1 0 1
0 1 0

)
where the spin projections takes on the values±1, 0. If one introduces the new (Cartesian)
componentsFµ, F1 = −(ψ−1 + ψ1)/

√
2, F∈ = −i(ψ1 − ψ−1)/

√
2, F0 = ψ0, instead of

the componentsψ1(x), ψ0(x), ψ−1(x) (cyclic components), then (5.5) takes the form

∂µε
µνηFη + smF ν = 0. (5.11)

A transversality condition follows from (5.11),

∂µFµ = 0. (5.12)

One can see now that the equations (5.11) are in fact field equations of the so-called
‘self-dual’ free massive field theory [24], with the Lagrangian

LSD = 1

2
FµFµ − s

2m
εµνλFµ∂νFλ = 0. (5.13)

As remarked in [25] this theory is equivalent to the topologically massive gauge theory [1]
with the Chern–Simons term. Indeed, the transversality condition (5.12) can be viewed as a
Bianchi identity, which allows the introduction of gauge potentialsAµ, namely a transverse
vector can be written (in topologically trivial spacetime) as a curl:

Fµ = εµνλ∂νAν = 1
2ε
µνλFνλ

whereFνλ = ∂νAλ − ∂λAν is the field strength. Thus,Fµ appears to be dual field strength,
which is a tree-component vector in 2+ 1 dimensions. Then (5.11) implies the following
equations forFµν

∂µF
µν + sm

2
εναβFαβ = 0 (5.14)



Poincaré group and relativistic wave equations in 2+ 1 dimensions 6109

which are the field equations of the topologically massive gauge theory with the Lagrangian

LCS = −1

4
FµνF

µν + sm
4
εµνλFµνAλ. (5.15)

One can find that finite transformations of̃M(2, 1) act on the Cartesian components
asF ′ν(x ′) = 3ν

µFµ(x). Here the combinationF̄µFµ = C(x) is preserved.C does not
depend onx for states with a definite momentum. The caseC > 0 corresponds to particles
with real massm 6= 0, the caseC = 0 corresponds to massless particles. The correspondent
wavefunctions will be presented below.

If a particle has integer or half-integer spin projections, then the correspondent
representation ofSU(1, 1) of a minimal dimension is the finite-dimensionalTS(g), where
S = |s|, and dimTS = 2S + 1. To describe states with fractional spin projections one has
to consider infinite-dimensional representationsSU(1, 1).

(2) Consider now unitary infinite-dimensional IRs ofSU(1, 1). In this caseS can
be non-integer,S < −1/2 (discrete series),−1/2 < S < 0 (supplementary series), or
complex,S = −1/2+ iλ/2 (principal series), see the appendix. MatricesSµ are Hermitian
and according to (5.5) the conjugated equation has the form

ψ†(x)(iSµ
←−
∂µ + sm) = 0. (5.16)

As a consequence of (5.5) and (5.16) the continuity equation holds

∂µj
µ = 0 jµ = ψ†Sµψ. (5.17)

In IR of the discrete positive (negative) seriesj0 = ψ†S0ψ is positively (negatively) defined.
Besides, for unitary IRs the scalar densityψ†ψ is also positively defined in contrast to the
finite-dimension case. For a discrete positive seriess can take on only positive values,
s = −S + n, and for negative ones only negatives = S − n, n = 0, 1, 2, . . . . The case
s = ±S has already been considered [4, 20, 21].

There are cases when the equations (5.4) and (5.5) are dependent. Indeed, multiplying
(5.5) by p̂µSµ +ms one gets

(p̂µS
µ +ms)(p̂µSµ −ms)ψ(x) = (p̂µp̂ν{Sµ, Sν} −m2s2)ψ(x) = 0. (5.18)

In the particular caseS = 1/2 we haves = ±1/2, Sµ = γ µ/2 and (5.18) is merely the
Klein–Gordon equation (5.4). In the general case the matricesSµ are notγ -matrices in
higher dimensions and the squared equation (5.18) does not coincide with the Klein–Gordon
equation.

As one can see from the consideration presented, the construction of the relativistic
wave equations in 2+ 1 dimensions is, in a sense, simpler than one in 3+ 1 dimensions.
That is connected with the vectorial nature of the operators of the angular momentum and
of the spin. In(3+ 1)-dimensional case the above mentioned operators are tensors and it
is namely this that complicates the problem.

Different IRs of M̃(2, 1) with m 6= 0 are marked by the spin projections. However,
one can see from the previous consideration, that the classification by the Lorentz spinS is
also useful.S defines the dimension of matrix representation of the spin operators in (5.4)
and (5.5).

One can easily see that massive particles have only one polarization state. Indeed, in
the rest frame the equation (5.5) has the form

(S0− s)ψ = 0. (5.19)

The spectrums coincides with the spectrum of the operatorS0, which is not degenerated
as was demonstrated above. Thus a fixation ofs leads to only one solution of (5.5).
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For S = 1/2 and S = 1 that property was demonstrated explicitly in [4]. One can
reach the same conclusion, remarking that the non-relativistic group of movements is
M(2) = T (2)×)SO(2), where the groupSO(2), which describes the spin, is an Abelian
one and has only one-dimensional IRs.

In the case of the infinite-dimensional unitary representations of the 2+ 1 Lorentz
group, it is easier to deal with the functionsf (x, z), but not with an infinite number of their
componentsψζ (x) in the S-representation.

As an example let us consider the plane wave solutions atm > 0. For S = 1/2 and
S = 1 such solutions were analysed in [4] where it was noted that all the components are
connected, that means that the number of spinning degrees of freedom is one. Here we
are going to present similar consideration for all the representations of the 2+ 1 Lorentz
group, which have lowest weights, namely, for finite-dimensionalTS (S > 0, integer or
half-integer), and for infinite-dimensional unitary representationsT +S (S 6 −1/2).

The wavefunction in the rest frame, which corresponds to the spin projections = −S,
has the formz2S

1 9(p0), p0 = E = ±m. Acting on it by finite transformations, we get at
E > 0 a solution in the form of the plane wave, which is characterized by the momentum
p,

f (p, z) = (z1ū1− z̄2u2)
2S9(p) P = U−1P0(U

−1)† P0 = mI. (5.20)

The momentump does not depend on the parameterφ, p0 = E = m coshθ , −p1 + ip2 =
m sinhθ eiω. Let us putφ = −ω (in this caseu1 is real). Using the relations (2.7), one can
express the parametersū1 andu2 via the momentump,(

u2

ū1

)
= 1√

2m(E +m)
(−p1+ ip2

E +m
)
. (5.21)

In the case of finite-dimensional representations one can get 2S + 1 componentsψζ (p) as
coefficients in the decomposition of the function (5.20),

ψ(p) =
(
ψS
. . .

ψ−S

)
=
(
u2S

2
. . .

ū2S
1

)
9(p) (5.22)

ψζ (p) = (CS+ζ2S )1/2ū
S−ζ
1 u

S+ζ
2 = (CS+ζ2S )1/2

(E +m)S−ζ (−p1+ ip2)
S+ζ

(2m(E +m))S 9(p). (5.23)

In the particular caseS = 1/2 we get [4],

ψ(p) = 1√
2m(E −m)

(−p2+ ip1

E +m
)
9(p). (5.24)

For representations of discrete and principal series similar results hold. For example, in the
former case one can get the formula (5.23), whereCn2S are the coefficients from (4.26) and
ζ = −S, −S + 1, . . . .

Among the above considered relativistic wave equations are ones which describe
particles with fractional real spin. These equations are connected with unitary multivalued
IRs of the Lorentz group and can be used to describe anyons. In spite of the fact that the
number of independent polarization states for massive 2+ 1 particles is one, the vectors
of the corresponding representation space have an infinite number of components inS-
representation. Thus,z-representation is more convenient in this case.

5.2. Dirac equation and CS evolution

It turns out that the 2+1 Dirac equation appears also in the case of the infinite-dimensional
unitary IRs of the 2+ 1 Lorentz group (discrete and principal series with highest or lowest
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weights) as an equation for CS evolution. To see that, let us take, for example, spinning
CS, related to the highest (lowest) weight of the IRT −S (T +S ) (see the appendix),

ψ−u (x, z) = (z1ū
2(x)+ z̄2ū

1(x))2S (5.25)

ψ+u (x, z) = (z1u
1(x)+ z̄2u

2(x))2S |u1|2− |u2|2 = 1. (5.26)

HereS can take on the value−1/2, that corresponds to the principal series ofSU(1, 1), or
the valuesS < −1/2, that correspond to the discrete series of the group. AtS integer or half-
integer the representations are single-valued. We demandψ+u (x, z) to be an eigenfunction
for the Lubanski–Pauli operator̂W = p̂Ŝ,

Ŵψ+u (x, z) = msψ+u (x, z). (5.27)

The left-hand side of (5.27) takes the form, after the action of the operatorŴ ,

S(p̂0(z̄2u
2− z1u

1)− p̂1(z1u
2− z̄2u

1)− ip̂2(z1u
2+ z̄2u

1))(z1u
1+ z̄2u

2)2S−1

= S(z̄2z1)pµγ
µ

(
u2(x)

u1(x)

)
(z1u

1+ z̄2u
2)2S−1.

Thus we obtain an equation for the parameters of CS (5.26),(
p̂µγ

µ − s

S
m

)(
u2(x)

u1(x)

)
= 0 (5.28)

which is a 2+ 1 Dirac equation with massm′ = (s/S)m. The same equation controls the
evolution of the parameters of CS (5.25), and also appears both in the caseS = −1/2, and
for arbitraryS < −1/2.

5.3. IR ofM̃(2,1): classification and bases

Here we are going to derive explicit forms of eigenfunctions for sets of commuting operators
of M̃(2, 1), decomposing GRR in IRs. A classification and a description of the unitary IR
of the group will also be given.

It is possible to construct bases for particles with spin, which consist of eigenvectors
for different sets of commuting operators. For example, for sets of operators:(p̂µ,

Ŵ , Ŝ2), (p̂2, Ŵ , Ŝ2, Ĵ2, J 0), (p̂
µ
, Ŵ , Ĵ2), (p̂2, Ŝ2, p̂0, L̂

0, Ŝ0 (we did not include the

Casimir operatorŴ in this set since it does not commute with the operatorsL̂µ and Ŝµ

separately)), (p̂µ, p̂
µ
, Ŵ ), and so on.

Let us consider states, which are eigenvectors for the operatorsp̂µ, Ŵ , Ŝ2 (plane waves).
They can be written in the following form

fp,S(x, z) = e−ipxfS(p, z) (5.29)

wherefS(z) is a homogeneous function on the variablesz1, z̄2 of the power 2S. These
states are important to classify IRs ofM̃(2, 1) by means of the little group method.

It is known that IRs of the motion groups of the pseudo-Euclidean spaces (Poincare
groups) are marked completely by means of parameters of orbits in the space of momenta
and by numbers, which characterize the IRs of a stationary subgroup of a state, belonging
to the orbit (little group) [11]. Thus let us consider three cases:m > 0 (orbitsO+m , O−m ),
m = 0 (orbitsO+0 , O−0 , O0

0), andm2 < 0 (orbitsOm).
(1) At m > 0, in the rest frame,̂pŜ = ±mŜ0, so that the eigenvectors of this operator

with the eigenvalues±ms are

fp,S(x, z) = e−ip0x
0
z̄S+s2 (−z1)

S−s . (5.30)
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One can find the stationary subgroup of the state (5.30) from the conditionU−1P0(U
−1)† =

P0, whereP0 = diag(m,m). The matricesU = diag(e−iϕ/2, eiϕ/2) obey the condition and
form a one-parametric subgroup, which is isomorphic to the groupU(1) with the generator
Ĵ 0 = L̂0 + Ŝ0. The eigenvaluess of this operator together with the characteristic of the
orbit mark IR of M̃(2, 1). Let us denote such representations asT +m,s andT −m,s . They are
single-valued ats integer and half-integer, whereasms and−ms are the eigenvalues of the
operatorp̂Ŝ in these representations, respectively. Subjecting the state (5.30) to a finite
transformation ofM̃(2, 1), we get the function

fp′,S,s(x, z) = e−ip′xNS,s(z̄2u1− z1ū2)
S+s(z̄2u2− z1ū1)

S−s P ′ = U−1P0(U
−1)†. (5.31)

The spinning part of the function is the CS ofSU(1, 1). The parametersu1, ū2 are expressed
via the momentump′ (see (5.21)). This function describes a particle with real massm 6= 0,
momentump′, Lorentz spinS, and the spin projections. The normalization coefficientNS,s
depends on IR series, see the appendix.

The wavefunction of a massive particle with Lorentz spinS, energy p0, angular
momentum projectionl, and spin projectionζ on the axisx0, has the form, according
(3.30) of

fp0,S,ζ,l(x, z) = e−ip0x
0+ilφJl(ρ

√
p2

0 −m2)NS,ζ z̄
S+ζ
2 (−z1)

S−ζ . (5.32)

(2) The wavefunction of a massless particle withpµ = p(1, 1, 0) is

fp,S(x, z) = e−ip(x0−x1)fS(z) Ŵfp,S(x, z) = p e−ip(x0−x1)(Ŝ0− Ŝ1)fS(z).

The operator̂S0−Ŝ1 is the generator of the stationary subgroup of the state. TheU matrices,
which correspond to the subgroup, obey the condition

U−1P01(U
−1)† = P01 P01 =

(
p p

p p

)
and have the form

U = ±
(

1+ ia ia
−ia 1− ia

)
.

They form anR ⊗ Z group, whereR is the additive group of the real numbers, andZ
is the multiplicative group, which consist of two elements{1,−1}. These two elements
correspond to the identical transformation and toϕ = 2π rotation around the axisx0,
respectivelyU = I andU = −I , whereI is the unit matrix. One can see from (4.4) that
the latter rotation does not changex but changes the sign ofz, T (2π)f (x, z) = f (x,−z).

The eigenvectors of the operatorŜ0− Ŝ1, which correspond to the eigenvaluesλ, have
the form

fλ(z) = F(z1− z̄2) exp

(
λ
z1+ z̄2

z̄2− z1

)
. (5.33)

The wavefunctions of a massless particle with the momentum(p, p,0), Lorentz spinS, and
the spin projectionλ on the direction of the momentum can be written as

fp,S,λ(x, z) = e−ip(x0−x1)(z1− z̄2)
2S exp

(
λ
z1+ z̄2

z̄2− z1

)
. (5.34)

They are eigenvectors of the operatorsŴ andŜ2 with the eigenvaluesK = pλ andS(S+1).
These functions change sign under theZ-transformations (rotations on 2π ) at half-integerS
and remain unchanged atS integer. We denote IRs, which correspond tom = 0, by T +0,ε,K
andT −0,ε,K . Hereε = 0 (S integer) orε = 1 (S half-integer) mark IRs of theZ group. One
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can see that(Ŝ0−Ŝ1)n = [(z̄2−z1)(∂/∂z1+∂/∂z̄2)/2]n = [(z̄2−z1)/2]n(∂/∂z1+∂/∂z̄2)
n, and,

therefore, the operator̂S0− Ŝ1 can only have zero eigenvalues in the space of polynomials.
Thus as was mentioned in [3], eigenvalues of the Casimir operatorŴ are zero for the finite-
dimensional in spin wavefunctions of the massless particles. That can be seen directly using
the explicit form of the states (5.33) and (5.34). Atλ 6= 0 there is an exponential factor
dependent onz, its z-decomposition leads to an infinite number of wavefunction components,
similar states appear in the tachyon case.

Table 1. Unitary single-valued IRs ofM̃(2, 1).

Mass Eigenvalue
orbits IR Ŵ = p̂Ŝ States Remarks

m > 0, T +m,s ms (5.31) s > 0, integer or half-integer
O+m , O−m T −m,s −ms

m = 0, T +0,ε 0 (5.35) ε = 0, 1
O+0 ,O

−
0 T −0,ε 0

T +0,K,ε K = pλ (5.34) K 6= 0, real, infinite-dimensional IR
T −0,K,ε K = pλ

m2 < 0, Tm,0,ε 0 (5.36)
Om Tm,σ,ε imσ (5.36) σ 6= 0, real, infinite-dimensional IR

m = 0, T +S , T
−
S 0 See the Discrete series ofSU(1, 1)

O0
0 TS,ε 0 appendix Principal series ofSU(1, 1)

TS 0 Supplementary series ofSU(1, 1)
T 0

0 0 Invariant

At λ = 0, fS(z) = (z1 − z̄2)
2S and if S > 0 integer or half-integer, then the number of

components is finite (is equal to 2S + 1). We denote IRs atλ = 0 by T +0,ε andT −0,ε, where
ε = 0 corresponds to the integer andε = 1 to half-integerS. The case of an arbitrary
direction of movement,p′µ = p(1, cosϕ, sinϕ), can be derived by a rotation around the
axis x0, U = diag(eiϕ/2, e−iϕ/2), thenz′1 = z1 e−iϕ/2, z̄′2 = z̄ iϕ/2

2 . In particular, atλ = 0,

fp′,S(x, z) = e−ip′x(z1 e−iϕ/2− z̄2 eiϕ/2)2S. (5.35)

This function describes a massless particle with the momentump′ and Lorentz spinS.
(3) In the case of tachyons, the state withp0 = p2 = 0, p1 = im,

fp,S(x, z) = e−ip1x
1
fS(z)

has the stationary subgroup, which can be found from the conditionU−1P1(U
−1)† = P1,

where

U = ±
(

coshθ/2 i sinhθ/2
−i sinhθ/2 coshθ/2

)
P1 =

(
0 −im
−im 0

)
.

This subgroup is isomorphic toR⊗Z and has the generator̂J 1. The eigenvectorsfp,S(x, z)
for the operatorŝS1 and Ŝ2, with the eigenvaluesσ and S(S + 1) respectively, have the
form

fp,S,σ (x, z) = e−ip1x
1
(z̄2+ iz1)

S+iσ (z̄2− iz1)
S−iσ = e−ip1x

1
(z̄2

2 + z2
1)
S

(
z̄2− iz1

z̄2+ iz1

)−iσ

. (5.36)
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Functionsfp,S,σ (x, z) are the eigenvectors for the Casimir operatorsŴ and p̂2 with the
eigenvaluesp1σ and −p2

1, respectively. σ has to be real for unitary IRs, therefore,
for σ 6= 0, representations, which correspond to the imaginary mass case, are infinite-
dimensional in the spin. The case of arbitrary direction of the momentum can be derived
by means of a rotation, as was done above for the real and zero mass.

(4) Unitary IRs ofM̃(2, 1), which are connected with the orbitO0
0, are IRs ofSU(1, 1).

The classification of the single-valued unitary IR of thẽM(2, 1) = T (3)×)SU(1, 1)
group are summarized in table 1.

The IR states ofSU(1, 1), corresponding to the orbitO0
0, do not depend onx and are

invariant under translations. The sign (+ or −) at T is related to the sign ofp0. The
characteristic ‘infinite-dimensional’ means infinite-dimensionality in the spin space.

The finite-dimensional spin wavefunctions of massless particles and tachyons are zero
modes of the operator̂W .

To complete the picture one has to add to this table multivalued representationsT +m,s and
T −m,s at non-integer 2s, and multivalued IRs ofSU(1, 1), described in the appendix. The
explicit form of states, which are transformed under the representationsT +m,s andT −m,s at non-
integer 2s, can also be given by the formula (5.31), however, in this case,z-decomposition
generates an infinite number of components. Just those IRs are used to describe anyons.

Appendix. Unitary IR and coherent states of theSU (1, 1) group

The 2+ 1 Lorentz groupSO(2, 1), and closely related groupsSU(1, 1) and SL(2, R)
with the same algebra, have been studied in numerous papers [13–17, 22, 26–40]. Their
finite-dimensional IRs and unitary IRs (discrete series) are used to describe spin in(2+ 1)-
dimensions [4]. As is known,SO(3, 1) has only principal and supplementary series of
unitary representations, and the principal series is used to describe spin in 3+1 dimensions
[41, 42]. In this connection, in spite of everything, it is important to consider the same
series ofSO(2, 1) or SU(1, 1).

We are going to describe unitary IRs ofSU(1, 1), their discrete bases and corresponding
CS. The consideration, to be complete, is going to repeat some known results, but also to
present some new ones. For example, we are constructing CS in unitary IRs of the principal
series at arbitrary fractional projections of the angular momentum in addition to [39], where
only integer ones were considered. We construct unitary IRs, including multivalued, in
spaces of functions on various manifolds connected withSO(2, 1) or SU(1, 1), whereas
usually they are restricted to the unit disk or to a circle. In particular, we consider
decompositions of functions on a cone and one-sheeted hyperboloids with respect to unitary
IRs of SO(2, 1).

Consider the left representationT (U), U ∈ SU(1, 1), acting in the space of functions
f (v),

T (U)f (v) = f (U−1v) v =
(
v1

v2

)
. (A1)

The matricesU−1 can be parametrized by two complex numbersu1, u2,

U−1 =
(
ū1 −u2

−ū2 u1

)
|u1|2− |u2|2 = 1. (A2)

The combination

|v1|2− |v2|2 = C (A3)
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remains invariant under theSU(1, 1) transformations. GeneratorŝJµ, which correspond to
one-parametrical subgroups with parameters−αµ (see (2.3)), and arisinĝJ+ and lowering
Ĵ− operators have the following form in this representation

Ĵ 0 = −(1/2)(v1∂/v1− v2∂/v2) Ĵ− = v1∂/v2 Ĵ+ = v2∂/v1

Ĵ 1 = (1/2)(Ĵ+ − Ĵ−) = (1/2)(v2∂/v1− v1∂/v2)

Ĵ 2 = (i/2)(Ĵ+ + Ĵ−) = (i/2)(v1∂/v2+ v2∂/v1). (A4)

They obey the commutation relations

[Ĵ µ, Ĵ ν ] = −iεµνηĴη [Ĵ+, Ĵ−] = 2Ĵ 0 [Ĵ 0, Ĵ±] = ±Ĵ±
so thatĴ2 is a Casimir operator,

Ĵ2 = ĴµĴ µ = (Ĵ0)
2+ 1

2(Ĵ+Ĵ− + Ĵ−Ĵ+)
= 1

4(v1∂/∂v1+ v2∂/∂v2)(v1∂/∂v1+ v2∂/∂v2+ 2).

Let us take functions of the formfn1n2(v) = vn1
1 v

n2
2 . The action of the generators on

these functions can be found†,

Ĵ 0fn1n2 = mfn1n2 Ĵ2fn1n2 = j (j + 1)fn1n2 m = n2− n1

2
j = n1+ n2

2
Ĵ−fn1n2 = n2fn1+1,n2−1 Ĵ+fn1n2 = n1fn1−1,n2+1. (A5)

Thus, quasi-polynomials of the power 2j form an IR space (j characterizes the IR).̂J+
and Ĵ− are arising and lowering operators for the projection of the angular momentum
m = (n2 − n1)/2. If n2 > 0 and is integer thenfn1n2 belongs to an IR which has the
lowest weightv2j

1 ; if n1 > 0, and is integer then the IR has the highest weightv
2j
2 ; if both

ni > 0, i = 1, 2, and are integer then the IR is finite-dimensional (has both the highest and
lowest weights). For unitary IRs ofSU(1, 1): (Ĵ 0)+ = Ĵ 0, Ĵ+± = −Ĵ∓, that meansn2− n1

is real, andn1(n2 + 1) 6 0, n2(n1 + 1) 6 0, whereas for the IR ofSU(2): Ĵ+± = Ĵ∓ and
n1(n2+ 1) > 0, n2(n1+ 1) > 0 [22]. At a givenj one can select

Nn1n2v
n1
1 v

n2
2 (A6)

as elements of a discrete basis in the space of functionsfj (v), where Nn1n2 is the
normalization constant, andn1 = j −m, n2 = j +m.

A classification and weight structure of unitary infinite-dimensional and non-unitary
finite-dimensional IRs ofSU(1, 1) is presented in figure A1.

To describe the IRs of different series one has to define in more detail the space of
functionsf (v). At differentC in (A3) one can use the following parametrization ofv1 and
v2:

C = 0:v1 = ρ ei(ϕ+ω)/2 v2 = ρ ei(ω−ϕ)/2

0< ρ < +∞ 06 ϕ < 4π 06 ω < 2π (A7)

C = 1:v1 = cosh(θ/2) ei(ϕ+ω)/2 v2 = sinh(θ/2) ei(ω−ϕ)/2

06 θ < +∞ 06 ϕ < 4π 06 ω < 2π. (A8)

The case of negativeC (C = −1) is reduced to (A8) by the replacementv1 ↔ v2. The
parameterω is not changed under the group transformations in the case (A7), thus, there are

† We are going to use here the notationm for the anglular momentum projection (the same was used for the
mass), hoping that this will not lead to a misunderstanding.
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Figure A1. Weight diagrams for unitary and finite-dimensional IRs ofSU(1, 1).

two complex manifolds, on which the group is acting transitive: the complex hyperboloid
(A8) and the cone,

C = 0:v1 = ρ eiϕ/2 v2 = ρ e−iϕ/2 0< ρ < +∞ 06 ϕ < 4π. (A9)

Using the components(v1, v2) of the spinor and the complex conjugate components (v1, v2),
one can construct objects(x0, x1, x2), which are transformed under the three-dimensional
vector IRs withj = 1,

x0 = (|v1|2+ |v2|2)/2 x1 = (v1v2+ v1v2)/2 x2 = (v1v2− v1v2)/2i (A10)

x0 = v1v2 x1 = (v2
1 + v2

2)/2 x2 = (v2
1 − v2

2)/2i. (A11)

The vectors (A10) and (A11) have the same transformation properties, since the spinors
(v1, v2) and (v2, v1) are transformed equally. The latter can be easily checked, using the
explicit form of the matrix (A2). Substituting (A9) into (A10) or (A11), we get the cone

x0 = ρ2 x1 = −ρ2 cosϕ x2 = −ρ2 sinϕ x2
0 − x2

1 − x2
2 = 0. (A12)

Substituting (A8) into (A10), we get the two-sheeted hyperboloid

x0 = coshθ x1 = −sinhθ cosϕ x2 = −sinhθ sinϕ x2
0 − x2

1 − x2
2 = 1. (A13)

If vk are periodic inϕ with the period 4π , thenxµ are also periodic with the period 2π .
Let us turn first to IRs of the discrete seriesT +j (m = −j,−j + 1,−j + 2, . . .) and

T −j (m = j, j − 1, j − 2, . . .), j < −1/2, the theory of which is quite similar to that of the
finite-dimensional IR. The IRT +j andT −j can be realized in the space of functionsf (v),
wherev1 andv2 belong to the case (A8). The scalar product of functions on the complex
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hyperboloid,

〈f1 | f2〉 = 1

8π2

∫
f 1f2δ(|v1|2− |v2|2− 1) d2v1 d2v2

= 1

8π2

∫ 2π

0
dω

∫ 2π

−2π
dϕ

∫ ∞
0
f 1f2 sinhθ dθ d2v = d<v d=v (A14)

allows one to normalize the elements of the discrete basisT +j at j < −1/2,

ψj,m(v) = 〈v | jm〉 =
(
(−1)n20(−n1)

n2!0(−2j)

)1/2

v
n1
1 v

n2
2

=
(
(−1)n20(−n1)

n2!0(−2j)

)1/2

(cosh(θ/2))n1(sinh(θ/2))n2 eim(ϕ+4πk) eij (ω+2πk). (A15)

The projectionm, and thereforej (j = mmax in T −j , j = −mmin in T +j ), have to run
over the integer and half integer,j = −1,−3/2,−2, . . . , for representations in spaces of
single-valued functions.

The lowest weight〈v | j − j〉 = v
2j
2 has a stationary subgroupU(1) and CS are

parametrized by dots of the upper sheet of the two-sheeted hyperboloidSU(1, 1)/U(1).
An explicit form of CS can be obtained by the action of finite transformations on the lowest
weight,

ψj,u(v) = 〈v | ju〉 = (ū1v1+ u2v2)
2j (A16)

whereu = (ū1,−u2), ū1 = cosh(θ1/2) eimϕ1/2, −u2 = sinh(θ1/2) e−imϕ1/2 are elements of
the matrix (A2). The CS overlapping has the form

〈j ′u′ | ju〉 = δjj ′(u′1ū1− ū′2u2)
2j . (A17)

A detailed description of CS of the discrete series ofSU(n, 1) can be found in [40], and of
SU(1, 1) in [22, 39, 40]. The representationsT +j andT −j are conjugate; the discrete basis
T −j can be derived by means of the complex conjugation from (A15) or by the replacement
v1↔ v2.

For the functions, which are transformed with respect to one and the same representation
T +j , the integral overω in (A14) gives 2π . The completeness relation at a givenj can be
written both in terms of the discrete basis and in terms of CS,

1̂j =
j∑

m=−∞
|jm〉〈jm| = −2j − 1

4π

∫ 2π

−2π
dϕ1

∫ ∞
0
|jθ1ϕ1〉〈jθ1ϕ1| sinhθ1 dθ1. (A18)

The parameterj takes discrete values and the basis functions are orthonormalized on
the Kronecker symbolδjj ′ for the single-valued IR of the discrete series, whereas for
the principal series the condition of the orthonormality contains theδ-function δ(j − j ′).
Principal series can be constructed both in the space of functions on the complex hyperboloid
(A8), and on the cone (A9).

One can construct the principal series on the cone (A9) with the scalar product

〈f1 | f2〉 = (1/8π2)

∫ 2π

−2π
dϕ

∫ ∞
0
f1(ρ, ϕ)f2(ρ, ϕ)ρ dρ. (A19)

We getCn1n2 = 1, n1+ n2 = 2j = −1+ iλ, 2m = n2− n1, for the elements of the discrete
basis (A6) in the case of the principal series,

Ĵ± = e±iϕ((1/2)ρ∂/∂ρ ± i∂/∂ϕ) Ĵ0 = −i∂/∂ϕ (A20)

〈ρϕ | λm〉 = vn1
1 v

n2
2 = ρ−1+iλ eim(ϕ+4πk) 〈λm | λ′m′〉 = δ(λ− λ′)δmm′

〈ρϕ | ρ ′ϕ′〉 = (1/ρρ ′)δ(ln ρ − ln ρ ′)δ(ϕ − ϕ′) = (1/ρ)δ(ρ − ρ ′)δ(ϕ − ϕ′). (A21)
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Two IRs in the space of single-valued functions (with integer and half-integerm, the first
and the second principal series accordingly to the terminology of the work [15]) correspond
to each givenλ,

1̂= 1

8π2

∫ 2π

−2π
dϕ

∫ ∞
0
|ρϕ〉〈ρϕ|ρ dρ = 1

8π2

∫ +∞
−∞

dλ
∑
m

|λm〉〈λm|.

The summation in the last equation runs over all integer and half-integerm. Multivalued
IRs are characterized not only byλ but also by a numberε, |ε| 6 1/2, which gives the
nearest-to-zero value ofm (for single-valued IR,ε = 0 or ε = ±1/2). Elements of the
infinite-valued IR space are not periodic inϕ. Thus, an arbitrary representation of the
principal series is defined by two numbers(λ, ε), wherej = (−1+ iλ)/2 characterizes the
angular momentum square,J2 = j (j + 1) = (−1− λ2)/4, andε characterizes possible
values of the momentum projectionm = ε+ [m]. There is a certain analogy with IRs of the
principal series ofSO(3, 1), which are defined by two numbers(λ, S), whereS corresponds
to the spin [41, 42], andλ defines the square of the four-dimensional angular momentum.

The representation of the principal seriesT−1/2 is reducible atλ = 0 and|ε| = 1/2, and
is split into two IRs:T +−1/2(ε = −1/2) andT −−1/2(ε = 1/2); ε = ±1/2 corresponds to one
and the same IR atλ 6= 0.

One can remark that according to (A21), theρ-dependence of functions on the cone
is the same at a fixedj , and it is possible to consider the space of functionsf (ϕ) on the
circle, what they are usually doing, by considering the principal series of IRs. However,
such a reduction of the representation space is not always reasonable because the space of
functions on the cone sometimes appears naturally in different physical problems.

To construct CS one has to consider orbits in the representation space, factorized with
respect to stationary subgroups [39]. The stationary subgroup of the state|λm = 0〉 = ρ−1+iλ

is U(1), and CS, which correspond to integerm(ε = 0), are parametrized by the dots
(θ, ψ) on the upper sheet of the hyperboloidSU(1, 1)/U(1). (Such CS were constructed
in [39, 43] in the space of functions on a circle.) Substitutingū1 = cosh(θ/2) eiψ/2,
−u2 = sinh(θ/2) e−iψ/2, ρ ′ = ρ(coshθ + sinhθ cos(ψ + ϕ))1/2 in (A1) and (A2), we
get CS in the form

〈ρϕ | λθψ〉 = (ρ ′)−1+iλ = ρ−1+iλ(coshθ + sinhθ cos(ψ + ϕ))−1/2+iλ/2

〈λm | λ1θψ〉 = 1

8π2

∫ ∫
〈λm | ρϕ〉〈ρϕ | λ1θψ〉ρ dρ dϕ

= (1/2π)δ(λ− λ1)

∫ 2π

0
eimϕ(coshθ + sinhθ cos(ψ + ϕ))−1/2+iλ/2 dϕ

= δ(λ− λ1)
0(m+ 1)

0(m+ 1/2+ iλ/2)
Pm−1/2+iλ/2(coshθ) e−imψ (A22)

where Pm−1/2+iλ/2(coshθ) is adjoint Legendre function. Atm = 0 the latter goes over
to zonal harmonicP−1/2+iλ/2(coshθ) (it is also called the cone function [15, 44]). To
get CS at arbitraryε one has to act by means of finite transformations on the state
|λm = ε〉 = ρ−1+iλ eiεϕ ,

〈ρϕ | λεθψ〉 = ((v1ū1− v2u2)(−v1ū2+ v2u
1))−1/2+iλ/2

(−v1ū2+ v2u1

v1ū1− v2u2

)ε
= ρ−1+iλ(coshθ + sinhθ cos(ϕ + ψ))−1/2+iλ/2

×
(

cosh(θ/2) exp[−i(ϕ − ψ)/2]+ sinh(θ/2) exp[i(ϕ − ψ)/2]

cosh(θ/2) exp[i(ϕ − ψ)/2]+ sinh(θ/2) exp[−i(ϕ − ψ)/2]

)ε
. (A23)
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The caseε = 0, which we have already considered, andε = ±1/2, correspond to
representations in spaces of single-valued functions. In the latter case atm = ±1/2 we get

〈ρϕ | λ1/2, θψ〉 = (v1ū1− v2u2)
−1|v1ū1− v2u2|iλ

〈ρϕ | λ−1/2, θψ〉 = (−v1ū2+ v2u1)
−1|v1ū1− v2u2|iλ. (A24)

At λ = 0 the CS take a simple form

〈ρϕ | 0 1/2, θψ〉 = (v1ū1− v2u2)
−1 〈ρϕ | 0−1/2, θψ〉 = (−v1ū2+ v2u1)

−1 (A25)

which coincides with the explicit form of CS of the discrete series (A16) (in this case, the
only difference between the CS of different series consists of different domains ofv1 and
v2, see (A8) and (A9)).

Let us turn to IRs of supplementary series. The integral in (A19) is divergent at realj .
However, one can use a convergent ‘non-local’ scalar product

〈f1 | f2〉 =
∫ ∫

f1(x1)f2(x2)I (x1, x2) dx1 dx2 (A26)

where the kernel functionI (x1, x2) has to be invariant with respect to the group
transformations. For the cone one can select an invariant expression(v1v̄

′
1 − v̄2v

′
2) =

2i sin(ϕ/2−ϕ′/2)ρρ ′. At a fixedj representation functions have the formρ2j f (ϕ). Let us
selectI (x1, x2) = |(v1v

′
1−v2v

′
2)/2|−2j , then the integrand in (A26) isf1(ϕ)f2(ϕ

′)| sin(ϕ/2−
ϕ′/2)|−2j . It does not depend onρ, so that at a fixedj (A26) takes the form

〈f1 | f2〉 =
∫ 2π

−2π

∫ 2π

−2π
f1(ϕ)f2(ϕ

′)| sin(ϕ/2− ϕ′/2)|−2j dϕ dϕ′ (A27)

where−1/2 < j < 0, the latter is necessary for the scalar product to be convergent and
positive defined.

For the single-valued representations of the supplementary seriesm is integer, for the
multi-valued representations one has to introduceε, |ε| 6 |j | (restrictions onε follow from
the unitarity of the representation, see figure 1). Matrix elements of the supplementary
series IRs are expressed via the so-called torus function [44].

An invariant dispersion with respect toSO(2, 1) transformations can be written as

1J2 = 〈ĴµĴ µ〉〈Ĵµ〉〈Ĵ µ〉 = (1J 0)2− (1J 1)2− (1J 2)2. (A28)

It has the valuej (j + 1)−m2 on the states|jm〉. At a givenj CS minimize the absolute
value of the dispersion (A28). For CS of the discrete series1J 2 = j , and for the principal
series1J 2 = −1/4− λ2/4− ε2.

We now present a short summary of IRs studied.
For single-valued unitary IRs ofSO(2, 1) the angular momentum projectionm is integer,

for single-valued IRs ofSU(1, 1) it is integer or half-integer. For multivalued unitary IRs the
projectionm can take any real values. Here we find an essential difference from the Lorentz
group in four dimensions, for unitary representations of the group this projection is always
integer or half-integer. That is connected with the existence of the non-Abelian compact
subgroupSU(2) ∼ SO(3). Representations of the discrete seriesT ±j (g) of SU(1, 1) at real,
integer and half-integerj < −1/2 are single valued and have the highest and lowest weights
m = ±j . Representations of the principal seriesTj,ε(g), j = −1/2+ iλ, −1/2< ε 6 1/2,
are single-valued atε = 0 and atε = 1/2. At ε 6= 1/2 representations are irreducible and
have neither highest nor lowest weights; atε = 1/2 the representation is split in two ones:
T −j,1/2(g) with the highest weightm = −1/2 andT +j,1/2(g) with the lowest weightm = 1/2.

Now we have to make some technical remarks. As follows from our consideration,
representatives of all non-equivalent finite-dimensional and unitary IRs ofSU(1, 1) can be
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Table A1. Unitary and finite-dimensional IRs ofSU(1, 1).

Series S ζ s-v or m-v

Finite-dimensional:TS S > 0, integer S − n, s-v
or half-integer n 6 2S

Discrete: S < −1/2 s-v atS = −1− n/2
T +S −S + n
T −S S − n

Principal:
TS,ε , −1/2< ε 6 1/2 S = −1/2+ iλ/2 ε ± n s-v atε = 0, 1/2
T−1/2,1/2 = T +−1/2 ⊕ T −−1/2,
T +−1/2 S = −1/2 1/2+ n s-v
T −−1/2 S = −1/2 −1/2− n s-v

Supplementary: −1/2< S < 0
TS,ε, |ε| < |S| ε ± n s-v atε = 0
T +S (ε = S) ε + n m-v
T −S (ε = −S) ε − n m-v

constructed in the space of functions on only two complex variablesv1 andv2. At the same
time, studying the left GRR (4.4) of theM(2, 1) group, it is convenient to use functions on
the elementsz1, z̄2 of the first column of the matrixZ. In such a space the spin generators
(4.7) are reduced to the form

Ŝ0 = (1/2)(z1∂/z1− z̄2∂/z̄2) Ŝ1 = (i/2)(z1∂/z̄2+ z̄2∂/z1)

Ŝ2 = −(1/2)(z1∂/z̄2− z̄2∂/z1). (A29)

In fact, after the renotationz1→ v1, z̄2→ v2 they go over to the generators (A4).
The IRs ofSU(1, 1) are summarized for the case of spin operators in table A1. We

denote the eigenvalue ofŜ0 asζ and the eigenvalue of̂S2 asS(S + 1), that corresponds to
the renotationj → S, m → ζ . The parametern in table A1 is integer andn > 0; s-v or
m-v signify single-valued or multivalued IR respectively.
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